Spin Boson Model(自旋玻色子模型)研究综述
Spin Boson Model 自旋玻色子模型 - The most popular two-state spin-boson model could be built by mapping the all-atom anharmonic Hamiltonian onto a two-level system bilinearly coupled to a harmonic bath using the energy gap time correlation function. [1] To arrive at general bounds on the resulting error of CD in this situation we consider a driven spin-boson model as a prototypical setup. [2] We investigate memory effects in the spin-boson model using a recently proposed measure for nonMarkovian behavior based on the information exchange between an open system and its environment. [3] We study two numerical models, the spin-boson model and a model of interacting hard-core bosons in a 1D harmonic trap. [4] We apply this master equation to a generalization of the paradigmatic spin-boson model, namely a collection of two-level systems interacting with a common environment of harmonic oscillators, as well as a collection of two-level systems interacting with a common spin environment. [5] A widely used strategy for simulating the charge transfer between donor and acceptor electronic states in an all-atom anharmonic condensed-phase system is based on invoking linear response theory to describe the system in terms of an effective spin-boson model Hamiltonian. [6] The non-Markovian dynamics of the driven spin-boson model at zero and finite temperature is investigated theoretically. [7] We apply these bounds to a 4-state quantum system and the anisotropic XY Ising model in the closed system case, and the Spin-Boson model in the open case. [8] When nuclear dynamics is approximated by the linearized semiclassical initial value representation, a negative ZPE parameter could lead to reasonably good performance in describing dynamic behaviors in typical spin-boson models for condensed-phase two-state systems, even at challenging zero temperature. [9] Using this approach, we produce a benchmark dataset for the dynamics of the Ohmic spin-boson model across a wide range of coupling strengths and temperatures, and also present a detailed analysis of the numerical costs of simulating non-equilibrium steady states, such as those emerging from the non-perturbative coupling of a qubit to baths at different temperatures. [10] With feature fusion of individually trained CNN-LSTM models for the quantum population and coherence dynamics, the proposed scheme is shown to have high accuracy and robustness in predicting the linearized semiclassical and symmetrical quasiclassical mapping dynamics of various spin-boson models with learning time up to 0. [11] We study the far-from-equilibrium dynamical regimes of a many-body spin-boson model with disordered couplings relevant for cavity QED and trapped ion experiments, using the discrete truncated Wigner approximation. [12] The method given in this study provides a general way to construct integrable spin-boson models. [13] We have benchmarked the surface hopping method to capture nuclear quantum effects in the spin-Boson model in the deep tunneling regime. [14] This approach is applied to the paradigmatic spin-boson model in order to calculate the mean and fluctuations of the heat transferred to the environment during thermal equilibration. [15] In this Article, we employ nonparametric machine learning algorithm (kernel ridge regression as a representative of the kernel methods) to study the quantum dissipative dynamics of the widely-used spin-boson model. [16] An electronic 2-level subsystem interacting with a classical bath through the spin-boson model to render accurate pure electronic dephasing in multimode molecular systems by eliminating the unphysical asymmetry in the line shape of the zero-phonon line (ZPL) exhibited by other models is exploited. [17] We demonstrate the efficiency and stability of the PSI for large ML-MCTDH wavefunctions containing up to hundreds of thousands of nodes by considering a series of spin-boson models with up to 10 bath modes, and find that for these problems the PSI requires roughly 3-4 orders of magnitude fewer Hamiltonian evaluations and 2-3 orders of magnitude fewer Hamiltonian applications than standard ML-MCTDH, and 2-3/1-2 orders of magnitude fewer evaluations/applications than approaches that use improved regularization schemes. [18] We illustrate this point by studying a spin-boson model with a large bath that contains up to 100 000 modes. [19] The valence and the conduction states are mapped into the eigenstates of pseudo Pauli spin operators and the corresponding Hamiltonian, when embedded in a dissipative heat bath comprising the surrounding phonons and other electrons, makes possible a comprehensive analysis in terms of the much-studied spin-boson model of dissipative quantum statistical mechanics. [20] Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes. [21] Herein, we investigate the effects of sampling the initial conditions of the thermal baths from quantum and classical distributions on the steady-state heat current in the nonequilibrium spin-boson model-a prototypical model of a single-molecule junction-in different parameter regimes. [22] Considering as a case study the nonequilibrium spin-boson model, a collective coordinate is extracted from each thermal environment and added into the system to construct an enlarged system (ES). [23] We focus on two different models of a qubit in contact with the external environment: the first is the Spin Boson Model (SBM), which gives a description of the qubit in terms of static tunnelling energy and a bias field. [24]最流行的两态自旋玻色子模型可以通过使用能隙时间相关函数将全原子非谐哈密顿量映射到双线性耦合到谐波浴的两能级系统来构建。 [1] 为了得出在这种情况下 CD 产生的误差的一般界限,我们将驱动自旋玻色子模型视为原型设置。 [2] 我们使用最近提出的基于开放系统与其环境之间的信息交换的非马尔可夫行为测量来研究自旋玻色子模型中的记忆效应。 [3] 我们研究了两个数值模型,自旋玻色子模型和一维谐波陷阱中相互作用的硬核玻色子模型。 [4] 我们将这个主方程应用于范式自旋玻色子模型的推广,即与谐振子的共同环境相互作用的两能级系统的集合,以及与共同自旋环境相互作用的两能级系统的集合。 [5] 一种广泛使用的模拟全原子非谐凝聚相系统中供体和受体电子态之间的电荷转移的策略是基于调用线性响应理论来根据有效的自旋玻色子模型哈密顿量来描述系统。 [6] 从理论上研究了驱动自旋玻色子模型在零温度和有限温度下的非马尔可夫动力学。 [7] 我们将这些界限应用于四态量子系统和封闭系统情况下的各向异性 XY Ising 模型,以及开放情况下的自旋玻色子模型。 [8] 当核动力学由线性化的半经典初始值表示近似时,即使在具有挑战性的零温度下,负 ZPE 参数也可以在描述凝聚相两态系统的典型自旋玻色子模型中的动态行为方面产生相当好的性能。 [9] 使用这种方法,我们为欧姆自旋玻色子模型在广泛的耦合强度和温度下的动力学生成了一个基准数据集,并且还详细分析了模拟非平衡稳态的数值成本,例如那些来自量子位与不同温度下的浴的非微扰耦合。 [10] 通过将单独训练的 CNN-LSTM 模型对量子种群和相干动力学进行特征融合,所提出的方案在预测各种自旋玻色子模型的线性化半经典和对称准经典映射动力学方面具有很高的准确性和鲁棒性,学习时间可达0。 [11] 我们使用离散截断 Wigner 近似研究了具有与空腔 QED 和俘获离子实验相关的无序耦合的多体自旋玻色子模型的远离平衡动力学状态。 [12] 本研究中给出的方法提供了一种构建可积分自旋玻色子模型的通用方法。 [13] 我们已经对表面跳跃方法进行了基准测试,以在深隧道机制中捕获自旋玻色子模型中的核量子效应。 [14] 这种方法应用于典型的自旋玻色子模型,以计算热平衡期间传递到环境的热量的平均值和波动。 [15] 在本文中,我们采用非参数机器学习算法(核岭回归作为核方法的代表)来研究广泛使用的自旋玻色子模型的量子耗散动力学。 [16] 电子 2 能级子系统通过自旋玻色子模型与经典浴相互作用,通过消除其他模型表现出的零声子线 (ZPL) 线形的非物理不对称性,在多模分子系统中呈现准确的纯电子相移。被剥削。 [17] 我们通过考虑一系列具有多达 10 种浴模式的自旋玻色子模型,证明了 PSI 对于包含多达数十万个节点的大型 ML-MCTDH 波函数的效率和稳定性,并发现对于这些问题,PSI 大约需要 3与标准 ML-MCTDH 相比,哈密顿量评估减少 -4 个数量级,哈密顿量应用减少 2-3 个数量级,与使用改进的正则化方案的方法相比,评估/应用减少 2-3/1-2 个数量级。 [18] 我们通过研究一个包含多达 100000 个模式的大浴场的自旋玻色子模型来说明这一点。 [19] 价态和传导态被映射到伪泡利自旋算子的本征态和相应的哈密顿量中,当嵌入由周围声子和其他电子组成的耗散热浴中时,就可以对大量研究的自旋进行全面分析。耗散量子统计力学的玻色子模型。 [20] 欧姆自旋玻色子模型中耗散量子相变的研究在环境模式的密集极限中具有数值挑战性。 [21] 在这里,我们研究了从量子分布和经典分布对热浴的初始条件进行采样对非平衡自旋玻色子模型(单分子结的原型模型)中不同参数方案中稳态热电流的影响。 [22] 以非平衡自旋玻色子模型为例,从每个热环境中提取一个集体坐标并将其添加到系统中以构建一个扩大系统(ES)。 [23] 我们专注于与外部环境接触的两个不同的量子比特模型:第一个是自旋玻色子模型 (SBM),它根据静态隧穿能量和偏置场来描述量子比特。 [24]