Soft Graviton(软引力子)研究综述
Soft Graviton 软引力子 - Here we present a novel theoretical effect involving the spontaneous emission of soft gravitons by photons as they bend around a heavy mass and discuss its observational prospects. [1] BMS transformations are related to the emission of soft gravitons, which play the role of Goldstone bosons of spontaneously broken BMS symmetry. [2] This enables us to discuss the different extensions of the Bondi-Metzner-Sachs-van der Burg (BMS) group and their relevance for holography, soft gravitons theorems, memory effects, and black hole information paradox. [3] The BMS-like charges we consider here are also referred to as BMS soft hair, since they correspond to soft gravitons and extend the notion of black hole hair. [4]在这里,我们提出了一种新颖的理论效应,涉及光子在软引力子绕重质量弯曲时自发发射,并讨论了其观测前景。 [1] BMS 变换与软引力子的发射有关,软引力子起到自发破坏 BMS 对称性的戈德斯通玻色子的作用。 [2] 这使我们能够讨论 Bondi-Metzner-Sachs-van der Burg (BMS) 群的不同扩展及其与全息、软引力子定理、记忆效应和黑洞信息悖论的相关性。 [3] 我们在这里考虑的类 BMS 电荷也称为 BMS 软毛,因为它们对应于软引力子并扩展了黑洞毛的概念。 [4]
Subleading Soft Graviton 子引导软引力子
In [8] it was shown that supertranslation and $$ \overline{\mathrm{SL}\left(2,\mathbb{C}\right)} $$ SL 2 ℂ ¯ current algebra symmetries, corresponding to leading and subleading soft graviton theorems, are enough to determine the tree level MHV graviton scattering amplitudes. [1] We investigate the relation between the subleading soft graviton theorem and asymptotic symmetries in gravity in even dimensions higher than four. [2] Classical subleading soft graviton theorem in four space-time dimensions determines the gravitational wave-form at late and early retarded time, generated during a scattering or explosion, in terms of the four momenta of the ingoing and outgoing objects. [3] These memories are associated with an infinite number of conservation laws at spatial infinity which lead to degenerate towers of subleading soft graviton theorems. [4] We analyze the single subleading soft graviton theorem in ( d + 1) dimensions under compactification on S 1. [5] After the necessary groundwork, we begin by proving a Ward identity for superrotations using the subleading soft graviton theorem, thereby demonstrating a semiclassical Virasoro symmetry for scattering in quantum gravity. [6]在 [8] 中显示了超平移和 $$ \overline{\mathrm{SL}\left(2,\mathbb{C}\right)} $$ SL 2 ℂ ¯ 当前的代数对称性,对应于领先和次领先的软引力子定理,足以确定树级 MHV 引力子散射幅度。 [1] 我们研究了次领先的软引力子定理与甚至大于四维的引力渐近对称性之间的关系。 [2] 四个时空维度中的经典次引导软引力子定理根据进出物体的四个动量确定了在散射或爆炸过程中产生的晚期和早期延迟时间的引力波形。 [3] 这些记忆与无限多的空间无限守恒定律相关联,这些守恒定律导致次级软引力子定理的退化塔。 [4] 我们分析了在 S 1 上紧化下 ( d + 1) 维的单次引导软引力子定理。 [5] 在必要的基础工作之后,我们首先使用次引导软引力子定理证明超旋转的 Ward 恒等式,从而证明量子引力散射的半经典 Virasoro 对称性。 [6]
soft graviton theorem 软引力子定理
In [8] it was shown that supertranslation and $$ \overline{\mathrm{SL}\left(2,\mathbb{C}\right)} $$ SL 2 ℂ ¯ current algebra symmetries, corresponding to leading and subleading soft graviton theorems, are enough to determine the tree level MHV graviton scattering amplitudes. [1] We investigate the relation between the subleading soft graviton theorem and asymptotic symmetries in gravity in even dimensions higher than four. [2] The Poisson brackets of the gravitational field at null infinity play a pivotal role in establishing the equivalence between the Ward identities involving BMS charges and the soft graviton theorem. [3] Classical subleading soft graviton theorem in four space-time dimensions determines the gravitational wave-form at late and early retarded time, generated during a scattering or explosion, in terms of the four momenta of the ingoing and outgoing objects. [4] These memories are associated with an infinite number of conservation laws at spatial infinity which lead to degenerate towers of subleading soft graviton theorems. [5] Here, I show conformally soft factorization of celestial amplitudes for gravity and identify it as the celestial analogue of Weinberg's soft graviton theorem. [6] We analyze the single subleading soft graviton theorem in ( d + 1) dimensions under compactification on S 1. [7] After the necessary groundwork, we begin by proving a Ward identity for superrotations using the subleading soft graviton theorem, thereby demonstrating a semiclassical Virasoro symmetry for scattering in quantum gravity. [8]在 [8] 中显示了超平移和 $$ \overline{\mathrm{SL}\left(2,\mathbb{C}\right)} $$ SL 2 ℂ ¯ 当前的代数对称性,对应于领先和次领先的软引力子定理,足以确定树级 MHV 引力子散射幅度。 [1] 我们研究了次领先的软引力子定理与甚至大于四维的引力渐近对称性之间的关系。 [2] 零无穷处引力场的泊松括号在建立涉及 BMS 电荷的 Ward 恒等式与软引力子定理之间的等价性方面发挥了关键作用。 [3] 四个时空维度中的经典次引导软引力子定理根据进出物体的四个动量确定了在散射或爆炸过程中产生的晚期和早期延迟时间的引力波形。 [4] 这些记忆与无限多的空间无限守恒定律相关联,这些守恒定律导致次级软引力子定理的退化塔。 [5] 在这里,我展示了重力天体振幅的保形软分解,并将其识别为温伯格软引力子定理的天体类似物。 [6] 我们分析了在 S 1 上紧化下 ( d + 1) 维的单次引导软引力子定理。 [7] 在必要的基础工作之后,我们首先使用次引导软引力子定理证明超旋转的 Ward 恒等式,从而证明量子引力散射的半经典 Virasoro 对称性。 [8]