Plane Domain(平面域)研究综述
Plane Domain 平面域 - ABSTRACT For a plane domain we study correlations of the Euclidean maximum modulus and three hyperbolic domain characteristics connected with the Poincaré metric of the domain and the distance function. [1] The experimental data are analysed by simulating scattering data starting from micromagnetic simulations, and we find that the out of plane domains of the Co/Pd multilayer intrude into the NiFe layers to a greater extent than would be expected from micromagnetic simulations performed using the standard magnetically isotropic input parameters for the NiFe layers. [2] Graphitization is found to induce perpendicular magnetic anisotropy in cobalt at a thickness in the range 4–5 atomic layers, where out-of-plane domains separated by chiral Neél type walls are observed. [3] This paper considers local stress-strain state in the apex zone of an angular cut-out on the boundary of a plane domain. [4] In this paper we develop and analyze a unified approximation of the velocity–pressure pair for the Stokes–Darcy coupled problem in a plane domain. [5] Presence of multiple in-plane domains which oppose polarization switching of adjacent domains, was found to be the cause for the small observed polarization. [6] The in-plane domains rotate 60° from each other in the film. [7] Out-of-plane domains were observed with 180° domain walls less than 20 nm width, in good agreement with micromagnetic simulations. [8] In the variable-kinematics framework, the levels of hp– and p–refinements in the through-thickness and in-plane domains are free parameters that can be varied independently. [9]摘要 对于平面域,我们研究了欧几里得最大模量和与域的庞加莱度量和距离函数相关的三个双曲域特征的相关性。 [1] 通过模拟从微磁模拟开始的散射数据来分析实验数据,我们发现 Co/Pd 多层的平面外域侵入 NiFe 层的程度大于使用标准磁力进行的微磁模拟所预期的程度。 NiFe 层的各向同性输入参数。 [2] 发现石墨化会在 4-5 个原子层的厚度范围内引起钴中的垂直磁各向异性,其中观察到由手性 Neél 型壁分隔的平面外域。 [3] 本文考虑了平面域边界上角切口顶点区域的局部应力-应变状态。 [4] 在本文中,我们开发和分析了平面域中斯托克斯-达西耦合问题的速度-压力对的统一近似。 [5] 发现存在多个与相邻域的极化切换相反的平面内域是观察到的小极化的原因。 [6] 面内域在薄膜中彼此旋转 60°。 [7] 在小于 20nm 宽度的 180° 畴壁上观察到平面外畴,这与微磁模拟非常吻合。 [8] 在可变运动学框架中,全厚度域和平面域中的 hp 和 p 细化水平是可以独立变化的自由参数。 [9]
Arbitrary Plane Domain 任意平面域
In this article, a novel meshless boundary function method (BFM) is proposed for solving the boundary identification problem of steady-state nonlinear heat conduction in arbitrary plane domain. [1] In this paper we propose an energy regularization technique to choose the source points and the weighting factors preceding the MQ-RBFs in the numerical solution of the Cauchy problem for the steady-state diffusion-convection-reaction equation in an arbitrary plane domain. [2] This article presents an efficient method to solve elliptic partial differential equations which are the nucleus of several physical problems, especially in the electromagnetic and mechanics, such as the Poisson and Laplace equations, while the subject is to recover a harmonic data from the knowledge of Cauchy data on some part of the boundary of the arbitrary plane domain. [3]本文针对任意平面域稳态非线性热传导的边界识别问题,提出了一种新的无网格边界函数法(BFM)。 [1] 在本文中,我们提出了一种能量正则化技术,用于在任意平面域中的稳态扩散-对流-反应方程的柯西问题的数值解中选择源点和 MQ-RBF 之前的加权因子。 [2] 本文提出了一种解决椭圆偏微分方程的有效方法,椭圆偏微分方程是几个物理问题的核心,特别是在电磁和力学中,如泊松和拉普拉斯方程,而主题是从柯西的知识中恢复谐波数据任意平面域边界的某些部分上的数据。 [3]