Mimo Uncertain(Mimo 不确定)研究综述
Mimo Uncertain Mimo 不确定 - A novel necessary and sufficient criterion is offered by using the value set concept to analyze the robust performance of fractional order MIMO uncertain systems based on the location of the characteristic equation roots. [1] When it is used as the main tracking controller for a MIMO uncertain nonlinear systems, the performances of the system, such as the approximation ability, the learning performance and the convergence rate, will be effectively improved. [2] To overcome these restrictions, a novel ILC is developed in this paper for MIMO uncertain nonlinear systems subject to external disturbances and performing nonrepetitive trajectory. [3] The terminal sliding mode controller (TSMC) is designed for MIMO uncertain nonlinear systems by utilizing the output of the proposed disturbance observer. [4] On the other hand, application of QFT to MIMO uncertain systems still remains to be one of the most difficult control problems for engineers. [5]基于特征方程根的位置,利用值集概念分析分数阶多输入多输出不确定系统的鲁棒性能,提出了一种新的充分必要判据。 [1] 当它作为MIMO不确定非线性系统的主跟踪控制器时,可以有效提高系统的逼近能力、学习性能和收敛速度等性能。 [2] 为了克服这些限制,本文针对 MIMO 不确定非线性系统开发了一种新的 ILC,该系统受外部干扰并执行非重复轨迹。 [3] 利用所提出的扰动观测器的输出,为 MIMO 不确定非线性系统设计了终端滑模控制器 (TSMC)。 [4] 另一方面,QFT 在 MIMO 不确定系统中的应用仍然是工程师们最困难的控制问题之一。 [5]
mimo uncertain nonlinear Mimo 不确定非线性
When it is used as the main tracking controller for a MIMO uncertain nonlinear systems, the performances of the system, such as the approximation ability, the learning performance and the convergence rate, will be effectively improved. [1] To overcome these restrictions, a novel ILC is developed in this paper for MIMO uncertain nonlinear systems subject to external disturbances and performing nonrepetitive trajectory. [2] The terminal sliding mode controller (TSMC) is designed for MIMO uncertain nonlinear systems by utilizing the output of the proposed disturbance observer. [3]当它作为MIMO不确定非线性系统的主跟踪控制器时,可以有效提高系统的逼近能力、学习性能和收敛速度等性能。 [1] 为了克服这些限制,本文针对 MIMO 不确定非线性系统开发了一种新的 ILC,该系统受外部干扰并执行非重复轨迹。 [2] 利用所提出的扰动观测器的输出,为 MIMO 不确定非线性系统设计了终端滑模控制器 (TSMC)。 [3]
mimo uncertain system Mimo 不确定系统
A novel necessary and sufficient criterion is offered by using the value set concept to analyze the robust performance of fractional order MIMO uncertain systems based on the location of the characteristic equation roots. [1] On the other hand, application of QFT to MIMO uncertain systems still remains to be one of the most difficult control problems for engineers. [2]基于特征方程根的位置,利用值集概念分析分数阶多输入多输出不确定系统的鲁棒性能,提出了一种新的充分必要判据。 [1] 另一方面,QFT 在 MIMO 不确定系统中的应用仍然是工程师们最困难的控制问题之一。 [2]