Isotropic Solid(各向同性固体)研究综述
Isotropic Solid 各向同性固体 - In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. [1] The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. [2] The initial state determines the subsequent evolution of the dense assembly into either an anisotropic solid, an isotropic or an anisotropic fluid, respectively. [3] Propagation of elastic waves in anisotropic solids is solved through a pure stress formalism. [4] The strain and stress fields of a rectangular dislocation loop in an isotropic solid that is a semi-infinite medium (half medium) are developed here for a Volterra-type dislocation. [5] To investigate the quasi-shear wave behavior and the underlying microscopic mechanism of an anisotropic solid under dynamic deformation beyond its Hugoniot elastic limit, LiF single crystals are shock-compressed along the [310] low-symmetry crystallographic orientation via normal plate-impact method. [6] In the case of isotropic solids we establish the continuous dependence of solutions upon initial data and body supplies. [7] They play a central role in nonlinear elasticity and their classification has been mostly accomplished for isotropic solids following Ericksen’s seminal work. [8] We investigate the numerical reconstruction of the missing thermal boundary data on a part of the boundary for the steady-state heat conduction equation in anisotropic solids from the knowledge of exact or noisy Cauchy data on the remaining and accessible boundary. [9] The star-shaped lattice shows a very unique anisotropic solid when the slope of the dispersion curve is negative. [10] Carboxylic acid groups were introduced into polystyrene, and the effect both on melt rheology and on mechanical properties of stretched and quenched anisotropic solids below the glass-transition temperature (Tg) was investigated. [11] Among the numerical approaches to fracture mechanics analysis of cracked anisotropic solids, the boundary element method is notable for high accuracy and performance due to its semi-analytical nature and the use of only boundary mesh. [12] This article presents a general theory on dislocation loops in multilayered anisotropic solids with magneto-electro-elastic couplings. [13] The effectiveness of the micropolar model to represent the behavior of materials made of particles of prominent size has been widely proved in the literature, in this paper we focus on the capability of this model to grossly capture the behavior of anisotropic solids under concentrated pressures. [14] Our work enables precise radiative lifetime calculations in III-nitrides and other anisotropic solid-state emitters. [15] In the study described here, we evaluated two improvements in the numerical model applied in previous works for the design of 3-D-printed lenses: (i) allowing the propagation of shear waves in the skull by means of its simulation as an isotropic solid and (ii) introduction of absorption into the set of equations that describes the dynamics of the wave in both fluid and solid media. [16] [2] discussed the gravity field impact on S-wavesin a non-homogeneous, incompressible and initially stressed anisotropic solidmedium. [17] From the elastic mechanics theory for anisotropic solids, the degradation model of tensile strength exposed to elevated temperature was confirmed. [18] Wave energy in anisotropic solids generally propagate along curved lines and forms non-circular wave fronts. [19] Numerical analyses show that a microelastic energy function dependent on a shear deformation measure in which rotational degrees of freedom of the particles are not included, leads to a model not capable to describe properly the elastic behavior of isotropic solids subjected to non-homogeneous deformation fields. [20] It can also be used to deal with nonlinear acoustic wave in anisotropic solids without modification. [21] Point defects embedded in an isotropic solid are considered as eigenstrain problem in gradient elasticity of bi-Helmholtz type. [22] Corresponding boundary integral equations are obtained for anisotropic solids with thread-like inclusions. [23] An analytical model based on the thermal conduction theory of anisotropic solids is proposed to predict the electrical conductivity of general multi-layered and multi-directional CNT webs. [24] For all loading paths the foam traces initial stiff and stable branches during which it deforms as an elastic, isotropic solid. [25] HighlightsDPSM is extended to model elastic wave propagation in anisotropic solids with defects. [26] A bstractWe provide a comprehensive classification of isotropic solid and fluid holographic models with broken translational invariance. [27] Finite size effects, which can be important in the case of an interface between an isotropic solid and a liquid, are studied in detail for the two crystal orientations. [28] The obtained temperature profiles obtained are in accordance with heat transfer theory and clearly illustrate the crystalline structure symmetry; this calculation permits to predict the possible thermal deformations in an anisotropic solid. [29] This study presents a unified approach to derive the acoustic nonlinearity parameter induced by dislocation motion in isotropic solids. [30] Constitutive relations for stress and the higher order stress in an isotropic solid, which are the conjugates of strain and strain gradient, respectively, are provided in this paper. [31]在本文中,为了更准确地描述各向同性固体在经历大温度变化时的热弹性行为,明确提出了新型热弹性耦合模型和相应的有限元模型,并通过实验测量进行了验证。 [1] 主体通常是具有 2D 传导平面的各向异性固体,但也可以是具有 1D 或各向同性传输路径的材料。 [2] 初始状态分别决定了致密组件随后演变为各向异性固体、各向同性或各向异性流体。 [3] 弹性波在各向异性固体中的传播是通过纯应力形式解决的。 [4] 此处为 Volterra 型位错开发了作为半无限介质(半介质)的各向同性固体中矩形位错环的应变和应力场。 [5] 为了研究各向异性固体在超出其 Hugoniot 弹性极限的动态变形下的准剪切波行为和潜在的微观机制,通过正常板冲击法沿 [310] 低对称晶体取向对 LiF 单晶进行冲击压缩。 [6] 在各向同性固体的情况下,我们建立了解决方案对初始数据和主体供应的连续依赖性。 [7] 它们在非线性弹性中起着核心作用,在 Ericksen 的开创性工作之后,它们的分类主要针对各向同性固体。 [8] 我们根据剩余和可访问边界上精确或嘈杂的柯西数据的知识,研究各向异性固体中稳态热传导方程的部分边界上缺失的热边界数据的数值重建。 [9] 当色散曲线的斜率为负时,星形晶格显示出非常独特的各向异性固体。 [10] 将羧酸基团引入聚苯乙烯中,研究了在玻璃化转变温度 (Tg) 以下对熔体流变性和拉伸和淬火的各向异性固体的机械性能的影响。 [11] 在裂纹各向异性固体断裂力学分析的数值方法中,边界元法因其半解析性质和仅使用边界网格而以高精度和高性能而著称。 [12] 本文介绍了具有磁电弹性耦合的多层各向异性固体中的位错环的一般理论。 [13] 微极模型表示由显着尺寸颗粒制成的材料行为的有效性已在文献中得到广泛证明,在本文中,我们重点关注该模型在集中压力下粗略捕捉各向异性固体行为的能力。 [14] 我们的工作能够在 III 族氮化物和其他各向异性固态发射器中进行精确的辐射寿命计算。 [15] 在这里描述的研究中,我们评估了在以前的工作中应用于 3D 打印镜片设计的数值模型的两项改进:(i)通过将其模拟为各向同性固体,允许剪切波在头骨中传播(ii) 将吸收引入描述流体和固体介质中波动力学的方程组。 [16] [2] 讨论了重力场对非均匀、不可压缩和初始应力各向异性固体介质中的 S 波的影响。 [17] 根据各向异性固体的弹性力学理论,证实了高温下拉伸强度的退化模型。 [18] 各向异性固体中的波能通常沿曲线传播并形成非圆形波阵面。 [19] 数值分析表明,依赖于剪切变形测量的微弹性能量函数(其中不包括粒子的旋转自由度)导致模型无法正确描述受非均匀变形场影响的各向同性固体的弹性行为。 [20] 也可用于处理各向异性固体中的非线性声波,无需修改。 [21] 嵌入各向同性固体中的点缺陷被认为是双亥姆霍兹梯度弹性中的本征应变问题。 [22] 对于具有线状夹杂物的各向异性固体,得到了相应的边界积分方程。 [23] 提出了一种基于各向异性固体热传导理论的分析模型来预测一般多层多向碳纳米管网的电导率。 [24] 对于所有加载路径,泡沫都会追踪初始的刚性和稳定分支,在此过程中,它会变形为弹性的各向同性固体。 [25] 亮点DPSM 已扩展到模拟具有缺陷的各向异性固体中的弹性波传播。 [26] 摘要我们提供了具有破坏平移不变性的各向同性固体和流体全息模型的综合分类。 [27] 有限尺寸效应在各向同性固体和液体之间的界面情况下可能很重要,详细研究了两种晶体取向。 [28] 得到的温度曲线符合传热理论,清楚地说明了晶体结构的对称性;该计算允许预测各向异性固体中可能的热变形。 [29] 本研究提出了一种统一的方法来推导由各向同性固体中的位错运动引起的声学非线性参数。 [30] 本文给出了各向同性固体中应力和高阶应力的本构关系,它们分别是应变和应变梯度的共轭。 [31]
Transversely Isotropic Solid 横向各向同性固体
In this study, a closed-form solution based on Elliot’s displacement potentials for transversely isotropic solids is specifically derived for validation purposes. [1] We have demonstrated a laboratory method for estimating the crack status inside a cylindrical rock sample based on a vertically cracked transversely isotropic solid model by using measured P- and S-wave velocities and porosity derived from strain data. [2] We obtain objectivity of strain energy for initially stressed transversely isotropic solids to derive the invariants and study resulting symmetry. [3] To this end, a general expression of the displacement vector in spherical transversely isotropic solid in terms of the vector spherical harmonics has been derived. [4] The main purpose of this study is to present a complete general solution for the Lord–Shulman non-classical equations of thermoelasticity for three-dimensional transversely isotropic solids. [5] The present investigation is concerned with the reflection and transmission phenomena of plane waves between a rotating thermoelastic transversely isotropic solid half space and a fiber-reinforced thermoelastic rotating solid half space under the effect of a magnetic field. [6] This article deals with the study of three-dimensional vibrations in stress free as well as rigidly fixed, thermally insulated (or isothermal), homogeneous transversely isotropic solid cylinder under the purview of three-phase lag model of generalized thermoelasticity. [7] The overall composite materials can be treated statistically as a transversely isotropic solid for the case of aligned ellipsoidal inclusions, or as an isotropic solid for the case of randomly oriented inclusions. [8]在这项研究中,基于 Elliot 的横向各向同性固体位移势的封闭形式解决方案专门用于验证目的。 [1] 我们已经展示了一种基于垂直裂纹横向各向同性固体模型估计圆柱形岩石样品内部裂纹状态的实验室方法,该方法使用来自应变数据的测量的 P 波和 S 波速度和孔隙度。 [2] 我们获得了初始应力横向各向同性固体的应变能的客观性,以导出不变量并研究由此产生的对称性。 [3] 为此,推导了球面横向各向同性固体中位移矢量的矢量球谐函数的一般表达式。 [4] 本研究的主要目的是为三维横向各向同性固体的 Lord-Shulman 非经典热弹性方程提供一个完整的一般解。 [5] 本研究关注在磁场作用下平面波在旋转热弹性横向各向同性固体半空间和纤维增强热弹性旋转固体半空间之间的反射和传输现象。 [6] 本文涉及在广义热弹性三相滞后模型的范围内研究无应力以及刚性固定、隔热(或等温)、均匀横向各向同性实心圆柱体的三维振动。 [7] 对于排列的椭圆形夹杂物,整个复合材料在统计上可以视为横向各向同性固体,对于随机取向的夹杂物,可以视为各向同性固体。 [8]
Reinforcement Isotropic Solid 增强各向同性固体
Strain energy release rate (SER) in conjunction with reinforcement isotropic solid (RIS) model is employed to propose a new fracture criterion in mixed-mode I/II loading named here as SERIS. [1] Using a new material model called reinforcement isotropic solid (RIS) concept, it is possible to extend the isotropic mixed mode fracture criteria into composite materials. [2] This criterion is developed combining the maximum shear stress (MSS) theory with reinforcement isotropic solid concept (RIS) as a superior material model. [3]应变能释放率 (SER) 与钢筋各向同性固体 (RIS) 模型相结合,用于提出一种新的混合模式 I/II 加载断裂准则,此处命名为 SERIS。 [1] 使用称为增强各向同性固体 (RIS) 概念的新材料模型,可以将各向同性混合模式断裂准则扩展到复合材料。 [2] 该标准是结合最大剪应力 (MSS) 理论与钢筋各向同性固体概念 (RIS) 作为一种优越的材料模型而开发的。 [3]
Homogeneou Isotropic Solid
However, their classification has been mostly established for homogeneous isotropic solids following the seminal works of Ericksen. [1] In turn, the porous layer covers a homogeneous isotropic solid half-space. [2]然而,在 Ericksen 的开创性工作之后,它们的分类主要是针对均质各向同性固体建立的。 [1] 反过来,多孔层覆盖均匀的各向同性固体半空间。 [2]
Elastic Isotropic Solid
The applied approach is based on the non-hypersingular traction based boundary integral equation method for the graded bulk elastic isotropic solid extended with the non-classical boundary conditions and the localized constitutive law for the matrix-nano-crack interface within the framework of the Gurtin-Murdoch theory. [1] Using lubrication theory for low-Reynolds-number flows and the theory for linearly elastic isotropic solids, we obtain perturbative solutions for the flow and deformation. [2]所应用的方法是基于基于非超奇异牵引的边界积分方程方法,用于在 Gurtin 框架内扩展非经典边界条件的梯度体弹性各向同性固体和基体-纳米-裂纹界面的局部本构律。 ——默多克理论。 [1] 利用低雷诺数流动的润滑理论和线弹性各向同性固体的理论,我们得到了流动和变形的微扰解。 [2]
isotropic solid material 各向同性固体材料
Shear moduli are i) measured directly and ii) calculated by applying elasticity theory for isotropic solid materials, using Young's moduli and Poisson's ratios from compression tests. [1] Such optically anisotropic solid materials are important for the application to next-generation microlight-emitting and visualizing devices as well as for fundamental optics studies of chiral light-matter interaction. [2] For isotropic solid materials, the elastic properties can be characterized from the measurement of the Rayleigh surface wave velocity. [3] Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique. [4]剪切模量 i) 直接测量和 ii) 通过对各向同性固体材料应用弹性理论,使用来自压缩试验的杨氏模量和泊松比计算。 [1] 这种光学各向异性固体材料对于下一代微发光和可视化设备的应用以及手性光与物质相互作用的基础光学研究非常重要。 [2] 对于各向同性固体材料,弹性特性可以通过瑞利表面波速度的测量来表征。 [3] 对方向性和散射场的进一步研究有望通过相控阵技术改进各向同性固体材料中散射图像的量化。 [4]
isotropic solid sphere 各向同性实心球体
This article constructs a mathematical model based on fractional-order deformations for a one-dimensional, thermoelastic, homogenous, and isotropic solid sphere. [1] This study is the first to use the diagonalization method for the new modelling of a homogeneous, thermoelastic, and isotropic solid sphere that has been subjected to mechanical damage. [2] Therefore, a mathematical model of thermoelastic, homogenous, and isotropic solid sphere with a rotation based on the mechanical damage definition has been constructed. [3] This study aims to study the radial wave dispersion of anisotropic solid sphere. [4]本文构建了一个基于分数阶变形的一维、热弹性、均质和各向同性固体球体的数学模型。 [1] 本研究首次使用对角化方法对遭受机械损伤的均质、热弹性和各向同性实心球体进行新建模。 [2] 因此,基于机械损伤定义,构建了具有旋转的热弹性、均质、各向同性固体球的数学模型。 [3] 本研究旨在研究各向异性固体球的径向波色散。 [4]
isotropic solid half
In turn, the porous layer covers a homogeneous isotropic solid half-space. [1] The present investigation is concerned with the reflection and transmission phenomena of plane waves between a rotating thermoelastic transversely isotropic solid half space and a fiber-reinforced thermoelastic rotating solid half space under the effect of a magnetic field. [2]反过来,多孔层覆盖均匀的各向同性固体半空间。 [1] 本研究关注在磁场作用下平面波在旋转热弹性横向各向同性固体半空间和纤维增强热弹性旋转固体半空间之间的反射和传输现象。 [2]
isotropic solid body
The connection of data of the applied linear coordinate transformation and the thermal material properties of anisotropic solid body is analysed. [1] Principle and method for designing electroacoustic transducers operating in the mode of elastic wave excitation in isotropic solid bodies are discussed. [2]分析了应用线性坐标变换的数据与各向异性固体热材料特性的关系。 [1] 讨论了在各向同性固体中以弹性波激发模式工作的电声换能器的设计原理和方法。 [2]
isotropic solid model
We have demonstrated a laboratory method for estimating the crack status inside a cylindrical rock sample based on a vertically cracked transversely isotropic solid model by using measured P- and S-wave velocities and porosity derived from strain data. [1] The reinforced isotropic solid model based on collinear crack propagation along fibers is proposed as an advantageous model to study the fracture behavior of composites. [2]我们已经展示了一种基于垂直裂纹横向各向同性固体模型估计圆柱形岩石样品内部裂纹状态的实验室方法,该方法使用来自应变数据的测量的 P 波和 S 波速度和孔隙度。 [1] 提出了基于沿纤维共线裂纹扩展的增强各向同性实体模型作为研究复合材料断裂行为的有利模型。 [2]