Isotropic Rock(各向同性岩石)研究综述
Isotropic Rock 各向同性岩石 - In order to investigate the effect of anisotropic characteristic on the stress-strain relationship and damage evolution, a statistical damage constitutive model of anisotropic rock under true triaxial condition was developed. [1] A novel physics-based numerical model is proposed to simulate the orientation and effective confining pressure dependent permeability of anisotropic rock. [2] Accordingly, no in-depth model of the underlying fracture process for anisotropic rocks under quasi-static and dynamic loading conditions exists to date. [3] There are many challenges to study the anisotropic rocks like block sampling for coring of rocks, core sampling, core loss, inconsistent failure patterns and difficulties during the comparative analysis and assessment of geotechnical properties. [4] The research analyses four different types of isotropic rocks with different lithologies, namely a Floresta sandstone, a Moleano limestone, a Macael marble and a Carrara marble. [5] In this paper, a new mixed-mode fracture criterion (modified K-ratio criterion) of anisotropic rock is established based on the ratio of stress intense factors (SIFs) and fracture toughness of arbitrary plane to predict both the crack initiation angle and fracture mode. [6] To quickly and accurately evaluate the FIP of a horizontal borehole drilled in anisotropic rocks, an analytical solution for borehole stress was first deduced based on the complex potential method and superposition principle. [7] (Gianzero, 1999) This paper examines how the resistivity discrepancies between laterolog and induction response in an electrically anisotropic rock can greatly affect calculated water saturations (Sw), and ultimately oil in place. [8] This representation of seismic sources has several useful properties: (i) it accounts for incipient faulting as a microseismicity source mechanism, (ii) it does not require a pre-defined fracture geometry, (iii) it accounts for both shear and volumetric source mechanisms, (iv) it is valid for general heterogeneous and anisotropic rocks and (v) it is consistent with elasto-plastic geomechanical simulators. [9] First, we have compared the effective moduli of isotropic rocks predicted by the Kuster–Toksöz (KT) model and the Mori–Tanaka (MT) model. [10] Existing approaches for determining rock thermal properties from well-logging data are appropriate only for isotropic rocks. [11] The combined analysis of elastic properties from different methods provides exciting insights on wellbore stability in anisotropic rock. [12] To fill such a research gap, this paper provides an analytical model for the depth and orientation where the shear failure of isotropic rocks around the caved space is firstly observed. [13] The calculated stiffness-matrix elements of the digital core are consistent with the Gassmann fluid-substitution theory in isotropic rock. [14] Currently available literature is mainly focused on Mode I fracture toughness (KIC) of anisotropic rock under tensile loading. [15] 3DEC was used to simulate the excavation of underground structures in anisotropic rock. [16] We have determined one of the equivalences between SV-P data extracted from vertical-geophone data and P-SV data extracted from horizontal geophones: that both modes react to azimuth-dependent variations in the S velocity in anisotropic rocks. [17] Experimental and theoretical analyses are presented that assess true mode II fracture toughness, K IIc , fracture energy, G IIc , and associated fracture process zone (FPZ) in anisotropic rocks. [18] This study aims to augment the existing know-how on such behaviour through analysis of point load tests conducted on anisotropic rocks of metamorphic nature. [19] This representation of seismic sources has several useful properties: i) it accounts for incipient faulting as a microseismicity source mechanism, ii) it does not require a pre-defined fracture geometry, iii) it accounts for both shear and volumetric source mechanisms, iv) it is valid for general heterogeneous and anisotropic rocks, and v) it is consistent with elastoplastic geomechanical simulators. [20] Previous studies have focused on homogeneous and isotropic rocks, but the influence of bedding planes on rock fracture is sparingly documented. [21] Most research on how to interpret Brazilian tests is only valid for isotropic rocks. [22] However, for anisotropic rocks, the axisymmetric condition is not always satisfied because incremental relationships between stresses and strains are not coaxial. [23] The evolution of $V_\mathrm{P}/V_\mathrm{S}$ with increasing fluid-saturated porosity is computed for isotropic rocks containing spheroidal pores. [24] This paper presents the mixed-mode I / II stress intensity factors (SIFs) of the through-thickness cracked Brazilian Disk (TCBD) specimen made of an anisotropic rock. [25] This paper proposes an elasto-perfect plastic constitutive model (called Jhoek) linking two failure criteria to model the sliding and non-sliding failure modes of anisotropic rocks. [26] This paper demonstrates nonlinear multi-parameter tomographic inversions for imaging near-surface targets in resistivity anisotropic background rocks, which may be a transversely isotropic or an axial anisotropic rock. [27] We define a new anisotropy parameter, ‘hydrostatic strain ratio’ ( ), which describes the differential contraction of anisotropic rocks consequent to hydrostatic compression. [28] A complete understanding of the fracture behaviour of anisotropic rocks under elevated temperatures is fundamentally important for rock and reservoir engineering applications. [29] The conventional semi-circular bend (SCB) test of anisotropic rocks, with symmetric loading, generates a Mixed-Mode I / II crack tip loading when the crack is not aligned with one of the principal material directions. [30] The present study was conducted to investigate the effect of salt crystallization on Arakʾs calcareous slates, as anisotropic rocks of Mesozoic. [31] The model was applied to a case study of two tunnel excavations in an anisotropic rock under an initial anisotropic stress state. [32] Granite is a significantly anisotropic rock that is affected by the pre-existing microcrack distribution. [33] The objective of this study is to determine the variations of strength on anisotropic rock using Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) tests. [34] This test has been considered to provide a reliable indication of rock abrasiveness for isotropic rocks. [35] , anisotropic rocks, woods, and crystals. [36]为研究各向异性特征对应力-应变关系及损伤演化的影响,建立了真三轴条件下各向异性岩石的统计损伤本构模型。 [1] 提出了一种新的基于物理的数值模型来模拟各向异性岩石的方位和有效围压相关渗透率。 [2] 因此,迄今为止,尚不存在准静态和动态加载条件下各向异性岩石潜在断裂过程的深入模型。 [3] 研究各向异性岩石存在许多挑战,例如岩石取心的块取样、岩心取样、岩心损失、不一致的破坏模式以及岩土特性比较分析和评估过程中的困难。 [4] 该研究分析了四种具有不同岩性的各向同性岩石,即 Floresta 砂岩、Moleano 石灰岩、Macael 大理岩和 Carrara 大理岩。 [5] 本文基于应力强度因子(SIFs)与任意平面断裂韧性的比值,建立了一种新的各向异性岩石混合模式断裂准则(修正K比准则),用于预测裂纹起裂角和断裂模式。 . [6] 为快速准确地评价各向异性岩石水平钻孔的FIP,首先基于复势法和叠加原理推导出钻孔应力解析解。 [7] (Gianzero, 1999) 本文研究了电各向异性岩石中侧向测井和感应响应之间的电阻率差异如何极大地影响计算的水饱和度 (Sw),并最终影响就地石油。 [8] 地震源的这种表示具有几个有用的特性:(i)它考虑了作为微震源机制的初期断层,(ii)它不需要预先定义的裂缝几何形状,(iii)它考虑了剪切和体积源机制, (iv) 它适用于一般的非均质和各向异性岩石,并且 (v) 它与弹塑性地质力学模拟器一致。 [9] 首先,我们比较了 Kuster-Toksöz (KT) 模型和 Mori-Tanaka (MT) 模型预测的各向同性岩石的有效模量。 [10] 从测井数据确定岩石热特性的现有方法仅适用于各向同性岩石。 [11] 来自不同方法的弹性特性的组合分析为各向异性岩石的井筒稳定性提供了令人兴奋的见解。 [12] 为了填补这一研究空白,本文提供了一个分析模型,用于首次观察到洞穴空间周围各向同性岩石剪切破坏的深度和方向。 [13] 计算得到的数字岩心刚度矩阵单元与各向同性岩石中的 Gassmann 流体置换理论一致。 [14] 目前可用的文献主要集中在拉伸载荷下各向异性岩石的 I 型断裂韧性(KIC)。 [15] 3DEC 用于模拟各向异性岩石中地下结构的开挖。 [16] 我们已经确定了从垂直检波器数据中提取的 SV-P 数据和从水平检波器中提取的 P-SV 数据之间的等价性之一:两种模式都对各向异性岩石中 S 速度的方位角相关变化作出反应。 [17] 给出了评估各向异性岩石中真实模式 II 断裂韧性、K IIc 、断裂能 G IIc 和相关断裂过程区 (FPZ) 的实验和理论分析。 [18] 本研究旨在通过分析在变质性质的各向异性岩石上进行的点载荷试验来增加关于这种行为的现有技术。 [19] 震源的这种表示具有几个有用的特性:i)它考虑了作为微震震源机制的初期断层,ii)它不需要预定义的裂缝几何形状,iii)它考虑了剪切和体积震源机制,iv)它适用于一般的非均质和各向异性岩石,并且 v) 它与弹塑性地质力学模拟器一致。 [20] 以前的研究集中在均质和各向同性岩石上,但很少记录层理面对岩石断裂的影响。 [21] 大多数关于如何解释巴西测试的研究仅对各向同性岩石有效。 [22] 然而,对于各向异性岩石,轴对称条件并不总是得到满足,因为应力和应变之间的增量关系不是同轴的。 [23] 对于含有球状孔隙的各向同性岩石,计算了 $V_\mathrm{P}/V_\mathrm{S}$ 随流体饱和孔隙度增加的演变。 [24] 本文介绍了由各向异性岩石制成的全厚度破裂巴西圆盘 (TCBD) 试样的混合模式 I / II 应力强度因子 (SIF)。 [25] 本文提出了一种弹性完美塑性本构模型(称为 Jhoek),将两个失效准则联系起来,以模拟各向异性岩石的滑动和非滑动失效模式。 [26] 本文演示了用于对电阻率各向异性背景岩石(可能是横向各向同性或轴向各向异性岩石)中近地表目标成像的非线性多参数层析成像反演。 [27] 我们定义了一个新的各向异性参数,“静水应变比”( ),它描述了静水压缩引起的各向异性岩石的差异收缩。 [28] 全面了解高温下各向异性岩石的断裂行为对于岩石和油藏工程应用至关重要。 [29] 具有对称载荷的各向异性岩石的常规半圆形弯曲 (SCB) 试验在裂纹未与主要材料方向之一对齐时产生混合模式 I / II 裂纹尖端载荷。 [30] 本研究旨在研究盐结晶对中生代各向异性岩石 Arakʾ 钙质板岩的影响。 [31] 该模型应用于在初始各向异性应力状态下各向异性岩石中的两个隧道开挖的案例研究。 [32] 花岗岩是一种明显的各向异性岩石,受预先存在的微裂纹分布的影响。 [33] 本研究的目的是使用单轴抗压强度 (UCS) 和巴西拉伸强度 (BTS) 测试来确定各向异性岩石的强度变化。 [34] 该测试被认为可以为各向同性岩石的岩石磨蚀性提供可靠的指示。 [35] 、各向异性的岩石、木材和水晶。 [36]
Transversely Isotropic Rock 横向各向同性岩石
The failure and mechanical behavior of transversely isotropic rock are significantly affected by the original bedding planes. [1] Transversely isotropic rock is a typical anisotropic rock type. [2] The influences of the dip angle on the long-term deformation and failure behaviors of an artificial transversely isotropic rock specimen were investigated by a series of creep experiments. [3] A numerical approach based on the particle discrete element theory is adopted to study the fracture evolution of transversely isotropic rocks with a pre-existing flaw under compression tests. [4] Transversely isotropic rock composed of two interbedded layers has been rarely studied, although landslides frequently occur in bedded rock masses. [5] The size effect and anisotropy in slate, as a transversely isotropic rock, were investigated, and the research focused on aspects of elastic properties, uniaxial compressive strength (UCS), triaxial compressive strength (TCS), and triaxial residual strength (TRS). [6] Considering the four types of failure modes characterized by different mechanisms, the dynamic failure mechanism of transversely isotropic rock was discussed. [7] This paper proposes an equivalent continuum model to describe the mechanical behavior of transversely isotropic rocks. [8] To explore the arrangement method of measuring points in the anisotropic rock mass, the principle of maximum displacement is applied to study the optimization of measuring points layout around a tunnel in the transversely isotropic rock mass. [9] Transversely isotropic rocks are known to exhibit strength that depend on the orientation of the bedding plane relative to the direction of load. [10] These two solutions are expressed in terms of the mathematically elegant and computationally powerful Stroh formalism and can be applied to the generally anisotropic rock half-space or a transversely isotropic rock mass with any oriented plane of isotropy. [11] , 0°, 15°, 30°, 45°, 60°, 75°, and 90°) on the tensile strength and failure pattern of transversely isotropic rocks. [12] A numerical approach based on the particle discrete element method, in which the rock matrix is represented as flat joint contacts and weak planes are conceptualized as a set of parallel continuous smooth joint contacts, was adopted to simulate the transversely isotropic rocks. [13] This paper introduces a methodology for the direct determination of the shear moduli in transversely isotropic rocks, using a single test, where a cylindrical specimen is subjected to uniaxial compression. [14] This paper presents a discrete element modeling (DEM) with particle flow code 2D (PFC2D) for simulating the mechanical behavior of artificial transversely isotropic rock under uniaxial compression. [15] This paper introduces a new methodology to measure the elastic constants of transversely isotropic rocks from a single uniaxial compression test. [16] The dynamic compression properties of transversely isotropic rocks and their dependence on the confining pressure and bedding directivity are important in deep underground engineering activities. [17] A large number of experimental investigations on anisotropic behavior of transversely isotropic rock have been conducted recently, and the strength and deformation anisotropy and macroscopic failure behavior and failure mechanism were studied in detail. [18] A new numerical approach based on the particle discrete element theory is built to study the mechanical behavior of transversely isotropic rocks with non-continuous planar fabrics under compression. [19] This paper is devoted to numerical analysis of deformation and failure of transversely isotropic rocks. [20] It is of great significance to develop a failure criterion that can describe the orientation-dependent behavior of transversely isotropic rocks. [21] However, it is hard to obtain ideal transversely isotropic rocks in fields, so rock-like specimens were poured by using artificial materials. [22] The evaluation of the mechanical properties of a transversely isotropic rock mass is a challenging task in practical engineering. [23] In order to make a better understanding of the hydraulic fracturing in transversely isotropic rock masses, the modified particle flow modeling method was used by embedding the smooth joint models within an area of certain thickness, and the optimized fluid-mechanical coupling mechanism was applied in hydraulic fracturing modeling. [24]横向各向同性岩石的破坏和力学行为受到原始层理面的显着影响。 [1] 横向各向同性岩石是典型的各向异性岩石类型。 [2] 通过一系列蠕变试验研究了倾角对人工横向各向同性岩石试样长期变形破坏行为的影响。 [3] 采用基于粒子离散元理论的数值方法研究了具有预存缺陷的横向各向同性岩石在压缩试验下的断裂演化。 [4] 由两个互层组成的横向各向同性岩石很少被研究,尽管滑坡经常发生在层状岩体中。 [5] 研究了板岩作为横向各向同性岩石的尺寸效应和各向异性,主要从弹性特性、单轴抗压强度(UCS)、三轴抗压强度(TCS)和三轴剩余强度(TRS)等方面进行研究。 [6] 考虑到四种不同机制的破坏模式,讨论了横向各向同性岩石的动力破坏机制。 [7] 本文提出了一个等效的连续体模型来描述横向各向同性岩石的力学行为。 [8] 为探索各向异性岩体测点布置方法,应用最大位移原理,研究横向各向同性岩体绕隧道测点布置优化。 [9] 已知横向各向同性岩石的强度取决于层理面相对于载荷方向的方向。 [10] 这两个解决方案用数学上优雅和计算强大的 Stroh 形式表示,并且可以应用于一般各向异性的岩石半空间或具有任何定向各向同性平面的横向各向同性岩体。 [11] ,0°,15°,30°,45°,60°,75°和90°)对横向各向同性岩石的抗拉强度和破坏模式。 [12] 采用基于粒子离散元法的数值方法,将岩石基质表示为平面节理接触,将弱平面概念化为一组平行连续光滑节理接触,以模拟横向各向同性岩石。 [13] 本文介绍了一种直接测定横向各向同性岩石中剪切模量的方法,该方法使用单个测试,其中圆柱形试样受到单轴压缩。 [14] 本文提出了一种使用粒子流代码 2D (PFC2D) 的离散元建模 (DEM),用于模拟单轴压缩下人造横向各向同性岩石的力学行为。 [15] 本文介绍了一种通过单轴压缩试验测量横向各向同性岩石弹性常数的新方法。 [16] 横向各向同性岩石的动态压缩特性及其对围压和层理方向性的依赖性在深部地下工程活动中非常重要。 [17] 近期对横向各向同性岩石的各向异性行为进行了大量的试验研究,对强度和变形各向异性以及宏观破坏行为和破坏机理进行了详细研究。 [18] 建立了一种基于粒子离散元理论的数值方法来研究具有非连续平面织物的横向各向同性岩石在压缩作用下的力学行为。 [19] 本文致力于横向各向同性岩石变形和破坏的数值分析。 [20] 开发一种能够描述横向各向同性岩石取向相关行为的破坏准则具有重要意义。 [21] 然而,在野外很难获得理想的横向各向同性岩石,因此使用人造材料浇注了类岩石标本。 [22] 横向各向同性岩体的力学性能评价是实际工程中的一项具有挑战性的任务。 [23] 为了更好地理解横向各向同性岩体的水力压裂,采用改进的粒子流建模方法,在一定厚度的区域内嵌入光滑节理模型,并在水力工程中应用优化的流体-机械耦合机制。压裂建模。 [24]
isotropic rock mas 各向同性岩浆
It is shown that Poisson’s ratio tends to 1/2 in isotropic rock mass. [1] In order to study the deformation of isotropic rock mass in an initial hydrostatic stress field, a method is proposed to calculate the radius of the broken zone of the surrounding rock in a circular tunnel. [2] To explore the arrangement method of measuring points in the anisotropic rock mass, the principle of maximum displacement is applied to study the optimization of measuring points layout around a tunnel in the transversely isotropic rock mass. [3] The applied workflow allows for upscaling of rock properties determined in the laboratory to the anisotropic rock mass properties required for further hydromechanical modelling on larger scales, e. [4] This means that these empirical models cannot capture anisotropic rock mass strength caused by joint orientations. [5] When constructing an excavation, the segmental lining installed in an anisotropic rock mass is susceptible to asymmetrical pressure and substantial local instabilities. [6] The anisotropic rock mass rating classification system, ARMR, has been developed in conjunction with the Modified Hoek-Brown failure to deal with varying shear strength with respect to the orientation and degree of anisotropy within an anisotropic rock mass. [7] This paper presents the key aspects of the modelling, which include: (1) An anisotropic rock mass strength model with properties derived from field and lab strength testing, and (2) a scheme to account implicitly for the deconfinement that accompanies buckling around excavations. [8] The evaluation of the mechanical properties of a transversely isotropic rock mass is a challenging task in practical engineering. [9] This paper presents the results of experimental tests and numerical simulations of the interaction between an anisotropic rock mass and the segmental lining of a tunnel. [10] In anisotropic rock mass, the dynamic response of a non-circular tunnel with imperfect interface is theoretically presented under an incidence of an anti-plane SH wave. [11]结果表明,在各向同性岩体中泊松比趋于 1/2。 [1] 为研究初始静水应力场下各向同性岩体的变形,提出了一种计算圆形隧道围岩破碎带半径的方法。 [2] 为探索各向异性岩体测点布置方法,应用最大位移原理,研究横向各向同性岩体绕隧道测点布置优化。 [3] 所应用的工作流程允许将在实验室中确定的岩石特性升级为在更大尺度上进行进一步流体力学建模所需的各向异性岩体特性,例如。 [4] 这意味着这些经验模型无法捕捉由节理方向引起的各向异性岩体强度。 [5] 施工时,安装在各向异性岩体中的管片衬砌容易受到不对称压力和严重的局部不稳定性的影响。 [6] 各向异性岩体分级系统ARMR 是与修正的Hoek-Brown 失效一起开发的,以处理与各向异性岩体内各向异性的方向和程度相关的不同剪切强度。 [7] 本文介绍了建模的关键方面,包括:(1) 各向异性岩体强度模型,其属性源自现场和实验室强度测试,以及 (2) 隐含地考虑伴随开挖周围屈曲的去限制的方案。 [8] 横向各向同性岩体的力学性能评价是实际工程中的一项具有挑战性的任务。 [9] 本文介绍了各向异性岩体与隧道管片衬砌之间相互作用的实验测试和数值模拟结果。 [10] 在各向异性岩体中,在反平面SH波入射下,理论上呈现了界面不完美的非圆形隧道的动力响应。 [11]
isotropic rock physic 各向同性岩石物理
Anisotropic Rock Physics Templates (RPTs) are efficient tools to interpret well logs. [1] To examine the link between geophysical signature and rock properties, an isotropic rock physics model is developed, using effective medium theories, to recreate the elastic properties of the shale and produce forward-looking templates for subsequent seismic inversion studies. [2] Secondly, an anisotropic rock physics model was constructed. [3] Anisotropic rock physics models provide a crucial tool to link sub-seismic geological variations to seismic-scale elastic parameters; and this approach is of particular importance to complex shales such as the Bowland Shale; a prospective shale-gas target in England. [4]各向异性岩石物理模板 (RPT) 是解释测井记录的有效工具。 [1] 为了检查地球物理特征和岩石特性之间的联系,开发了一个各向同性岩石物理模型,使用有效介质理论,重新创建页岩的弹性特性,并为后续的地震反演研究提供前瞻性模板。 [2] 其次,构建了各向异性岩石物理模型。 [3] 各向异性岩石物理模型提供了将次地震地质变化与地震尺度弹性参数联系起来的关键工具;这种方法对复杂的页岩,如鲍兰页岩特别重要;英格兰的一个潜在页岩气目标。 [4]
isotropic rock mass
Displacements measured at the walls of tunnels in highly anisotropic rock masses often reveal an asymmetric deformation pattern around the tunnel perimeter, which is often interpreted as the result of rock heterogeneity or changing geology. [1] The degree to which the supporting parameters affect the equivalent reinforcement performance are different in anisotropic rock masses, and the sensitivity of their influence is bolt length > bolt spacing > bolt diameter. [2] Anisotropic rock masses with multiple and complex structures increase the potential of the development and coalesce of cracks with pre-existing discontinuities for further potential failure. [3] In order to make a better understanding of the hydraulic fracturing in transversely isotropic rock masses, the modified particle flow modeling method was used by embedding the smooth joint models within an area of certain thickness, and the optimized fluid-mechanical coupling mechanism was applied in hydraulic fracturing modeling. [4]在高度各向异性的岩体中,在隧道壁上测量的位移通常会显示隧道周边的不对称变形模式,这通常被解释为岩石异质性或地质变化的结果。 [1] 各向异性岩体中支护参数对等效加固性能的影响程度不同,其影响敏感度为锚杆长度>锚杆间距>锚杆直径。 [2] 具有多种复杂结构的各向异性岩体增加了裂缝与预先存在的不连续性的发展和合并的潜力,以进一步潜在的破坏。 [3] 为了更好地理解横向各向同性岩体的水力压裂,采用改进的粒子流建模方法,在一定厚度的区域内嵌入光滑节理模型,并在水力工程中应用优化的流体-机械耦合机制。压裂建模。 [4]
isotropic rock property 各向同性岩石特性
The testing results provide an innovative method to accurately measure the anisotropic rock properties, offer new ideas about fractures identification, and have profound significance for exploration and development of tight reservoirs. [1] This is relevant because anisotropic rock properties strongly affect the behavior of tunnels and should be considered in tunnel design (Fortsakis et al. [2]测试结果为准确测量岩石各向异性物性提供了一种创新方法,为裂缝识别提供了新思路,对致密储层的勘探开发具有深远意义。 [1] 这是相关的,因为各向异性岩石特性强烈影响隧道的行为,应在隧道设计中加以考虑(Fortsakis 等人。 [2]