Isotropic Incompressible(各向同性不可压缩)研究综述
Isotropic Incompressible 各向同性不可压缩 - The article is devoted to solving the problem of cylindrical bending of a flat panel made of a transversely isotropic incompressible composite material with finite deformations. [1] The focus is on the prototypical case of random isotropic suspensions of equiaxed inclusions firmly embedded in an isotropic incompressible Gaussian rubber with constant viscosity. [2] This solution is suitable for any models of an isotropic incompressible body, i. [3] Here, we examine wrinkling responses in three-dimensional nonlinear systems containing a monodomain liquid crystal elastomer layer and a homogeneous isotropic incompressible hyperelastic layer, such that one layer is thin compared to the other. [4] A modification of the statement of the problem of statics of a homogeneous isotropic incompressible material at finite deformations is proposed, taking into account thermal expansion. [5] Here we consider the torsion of a solid circular cylinder composed of a transversely isotropic incompressible fiber-reinforced hyperelastic material. [6] In a recent paper in this journal by Anssari-Benam and Bucchi (2021), the authors have proposed a new two-parameter constitutive model for isotropic incompressible hyperelastic generalized neo-Hookean materials. [7] On the basis of Kolmogorov’s 4/5 law (Kolmogorov, 1941; Landau, Lifschitz 1975) analytical relations for triple two-point correlations of velocity and velocity gradients in homogeneous isotropic incompressible turbulence are derived (Kopyev, Zybin, 2018). [8] We use a multiple scales expansion to derive an asymptotic system of coupled nonlinear equations describing their propagation in all isotropic incompressible nonlinear elastic solids, generalizing the scalar Zabolotskaya equation of compressible nonlinear elasticity. [9] 2012), the authors showed that a similarity solution for anisotropic incompressible 3D magnetohydrodynamic (MHD) turbulence, in the presence of a uniform mean magnetic field $\vB_0$, exists if the ratio of parallel to perpendicular (with respect to $\vB_0$) similarity length scales remains constant in time. [10] On the basis of Kolmogorov’s 4/5 law (Kolmogorov, 1941; Landau, Lifschitz 1975) analytical relations for triple two-point correlations of velocity and velocity gradients in homogeneous isotropic incompressible turbulence are derived (Kopyev, Zybin, 2018). [11] An exact solution to the problem is found, which is valid for any model of isotropic incompressible elastic materials. [12] The problem of the Rivlin cube is to determine the stability of all homogeneous equilibria of an isotropic incompressible hyperelastic body under equitriaxial dead loads. [13] This solution is universal in the class of isotropic incompressible elastic bodies. [14] We study the inflation of a weakly magnetizable isotropic incompressible circular membrane in the presence of magnetic field generated by a magnetic dipole. [15]本文致力于解决有限变形横向各向同性不可压缩复合材料平板的圆柱弯曲问题。 [1] 重点是牢固嵌入具有恒定粘度的各向同性不可压缩高斯橡胶中的等轴夹杂物的随机各向同性悬浮液的原型案例。 [2] 该解决方案适用于各向同性不可压缩体的任何模型,即。 [3] 在这里,我们研究了包含单畴液晶弹性体层和均匀各向同性不可压缩超弹性层的三维非线性系统中的起皱响应,使得一层比另一层薄。 [4] 考虑到热膨胀,提出了对有限变形下均质各向同性不可压缩材料的静力学问题陈述的修改。 [5] 在这里,我们考虑由横向各向同性不可压缩纤维增强超弹性材料组成的实心圆柱体的扭转。 [6] 在 Anssari-Benam 和 Bucchi(2021 年)最近在本期刊上发表的一篇论文中,作者提出了一种新的各向同性不可压缩超弹性广义新胡克材料的两参数本构模型。 [7] 根据 Kolmogorov 的 4/5 定律 (Kolmogorov, 1941; Landau, Lifschitz 1975),导出了均匀各向同性不可压缩湍流中速度和速度梯度的三两点关联的解析关系 (Kopyev, Zybin, 2018)。 [8] 我们使用多尺度展开来推导耦合非线性方程的渐近系统,描述它们在所有各向同性不可压缩非线性弹性固体中的传播,推广可压缩非线性弹性的标量 Zabolotskaya 方程。 [9] 2012 年),作者表明,在存在均匀平均磁场 $\vB_0$ 的情况下,如果平行与垂直的比率(相对于 $\vB_0$ ) 相似性长度尺度在时间上保持不变。 [10] 根据 Kolmogorov 的 4/5 定律 (Kolmogorov, 1941; Landau, Lifschitz 1975),导出了均匀各向同性不可压缩湍流中速度和速度梯度的三两点关联的解析关系 (Kopyev, Zybin, 2018)。 [11] 找到了该问题的精确解决方案,该解决方案适用于任何各向同性不可压缩弹性材料模型。 [12] Rivlin 立方体的问题是确定各向同性不可压缩超弹性体在等三轴恒载下的所有均匀平衡的稳定性。 [13] 该解在各向同性不可压缩弹性体类中是通用的。 [14] 我们研究了在磁偶极子产生的磁场存在下弱磁化各向同性不可压缩圆形膜的膨胀。 [15]
Homogeneou Isotropic Incompressible 均质各向同性不可压缩
Here, we examine wrinkling responses in three-dimensional nonlinear systems containing a monodomain liquid crystal elastomer layer and a homogeneous isotropic incompressible hyperelastic layer, such that one layer is thin compared to the other. [1] A modification of the statement of the problem of statics of a homogeneous isotropic incompressible material at finite deformations is proposed, taking into account thermal expansion. [2] On the basis of Kolmogorov’s 4/5 law (Kolmogorov, 1941; Landau, Lifschitz 1975) analytical relations for triple two-point correlations of velocity and velocity gradients in homogeneous isotropic incompressible turbulence are derived (Kopyev, Zybin, 2018). [3] On the basis of Kolmogorov’s 4/5 law (Kolmogorov, 1941; Landau, Lifschitz 1975) analytical relations for triple two-point correlations of velocity and velocity gradients in homogeneous isotropic incompressible turbulence are derived (Kopyev, Zybin, 2018). [4]在这里,我们研究了包含单畴液晶弹性体层和均匀各向同性不可压缩超弹性层的三维非线性系统中的起皱响应,使得一层比另一层薄。 [1] 考虑到热膨胀,提出了对有限变形下均质各向同性不可压缩材料的静力学问题陈述的修改。 [2] 根据 Kolmogorov 的 4/5 定律 (Kolmogorov, 1941; Landau, Lifschitz 1975),导出了均匀各向同性不可压缩湍流中速度和速度梯度的三两点关联的解析关系 (Kopyev, Zybin, 2018)。 [3] 根据 Kolmogorov 的 4/5 定律 (Kolmogorov, 1941; Landau, Lifschitz 1975),导出了均匀各向同性不可压缩湍流中速度和速度梯度的三两点关联的解析关系 (Kopyev, Zybin, 2018)。 [4]
Transversely Isotropic Incompressible 横向各向同性不可压缩
The article is devoted to solving the problem of cylindrical bending of a flat panel made of a transversely isotropic incompressible composite material with finite deformations. [1] Here we consider the torsion of a solid circular cylinder composed of a transversely isotropic incompressible fiber-reinforced hyperelastic material. [2]本文致力于解决有限变形横向各向同性不可压缩复合材料平板的圆柱弯曲问题。 [1] 在这里,我们考虑由横向各向同性不可压缩纤维增强超弹性材料组成的实心圆柱体的扭转。 [2]
isotropic incompressible hyperelastic 各向同性不可压缩超弹性
Here, we examine wrinkling responses in three-dimensional nonlinear systems containing a monodomain liquid crystal elastomer layer and a homogeneous isotropic incompressible hyperelastic layer, such that one layer is thin compared to the other. [1] In a recent paper in this journal by Anssari-Benam and Bucchi (2021), the authors have proposed a new two-parameter constitutive model for isotropic incompressible hyperelastic generalized neo-Hookean materials. [2] The problem of the Rivlin cube is to determine the stability of all homogeneous equilibria of an isotropic incompressible hyperelastic body under equitriaxial dead loads. [3]在这里,我们研究了包含单畴液晶弹性体层和均匀各向同性不可压缩超弹性层的三维非线性系统中的起皱响应,使得一层比另一层薄。 [1] 在 Anssari-Benam 和 Bucchi(2021 年)最近在本期刊上发表的一篇论文中,作者提出了一种新的各向同性不可压缩超弹性广义新胡克材料的两参数本构模型。 [2] Rivlin 立方体的问题是确定各向同性不可压缩超弹性体在等三轴恒载下的所有均匀平衡的稳定性。 [3]
isotropic incompressible turbulence
On the basis of Kolmogorov’s 4/5 law (Kolmogorov, 1941; Landau, Lifschitz 1975) analytical relations for triple two-point correlations of velocity and velocity gradients in homogeneous isotropic incompressible turbulence are derived (Kopyev, Zybin, 2018). [1] On the basis of Kolmogorov’s 4/5 law (Kolmogorov, 1941; Landau, Lifschitz 1975) analytical relations for triple two-point correlations of velocity and velocity gradients in homogeneous isotropic incompressible turbulence are derived (Kopyev, Zybin, 2018). [2]根据 Kolmogorov 的 4/5 定律 (Kolmogorov, 1941; Landau, Lifschitz 1975),导出了均匀各向同性不可压缩湍流中速度和速度梯度的三两点关联的解析关系 (Kopyev, Zybin, 2018)。 [1] 根据 Kolmogorov 的 4/5 定律 (Kolmogorov, 1941; Landau, Lifschitz 1975),导出了均匀各向同性不可压缩湍流中速度和速度梯度的三两点关联的解析关系 (Kopyev, Zybin, 2018)。 [2]
isotropic incompressible elastic
An exact solution to the problem is found, which is valid for any model of isotropic incompressible elastic materials. [1] This solution is universal in the class of isotropic incompressible elastic bodies. [2]找到了该问题的精确解决方案,该解决方案适用于任何各向同性不可压缩弹性材料模型。 [1] 该解在各向同性不可压缩弹性体类中是通用的。 [2]