Isotropic Hyperelastic(各向同性超弹性)研究综述
Isotropic Hyperelastic 各向同性超弹性 - For finite-strain plasticity with anisotropic yield functions and anisotropic hyperelasticity, we use the Kroner-Lee decomposition of the deformation gradient combined with a yield function written in terms of the Mandel stress. [1] We present an analysis of anisotropic hyperelasticity, specifically transverse isotropy, that obtains closed-form expressions for the eigendecompositions of many common energies. [2] In this work, we developed the displacement-based computationally efficient volumetric locking-free 3D finite element using smoothening of determinant of deformation gradient (J-Bar method) within the framework of isotropic hyperelasticity. [3] The orthotropic properties of the wf-SMPC due to the woven fabric reinforcement were modeled using classical anisotropic hyperelasticity theorems. [4] The model in this work is based on the anisotropic hyperelasticity assumption (the transversely isotropic case) together with modelling of the evolving load-carrying capacity (scalar damage) whose change is governed by the Caputo-Almeida fractional derivative. [5] Elasticity tensors for isotropic hyperelasticity in principal stretches are formulated and implemented for the Finite Element Method. [6]对于具有各向异性屈服函数和各向异性超弹性的有限应变塑性,我们使用变形梯度的 Kroner-Lee 分解结合以 Mandel 应力表示的屈服函数。 [1] 我们提出了各向异性超弹性的分析,特别是横向各向同性,它获得了许多常见能量的特征分解的闭合形式表达式。 [2] 在这项工作中,我们在各向同性超弹性框架内使用平滑变形梯度行列式(J-Bar 方法)开发了基于位移的计算高效的无体积锁定 3D 有限元。 [3] 使用经典的各向异性超弹性定理模拟由于机织织物增强而产生的 wf-SMPC 的正交各向异性特性。 [4] 这项工作中的模型基于各向异性超弹性假设(横向各向同性情况)以及不断变化的承载能力(标量损伤)的建模,其变化由 Caputo-Almeida 分数导数控制。 [5] 主要拉伸各向同性超弹性的弹性张量是为有限元方法制定和实施的。 [6]
Transversely Isotropic Hyperelastic 横向各向同性超弹性
The paper deals with the finite bending analysis of transversely isotropic hyperelastic slender beams made of a neo-Hookean material with longitudinal voids. [1] The present paper proposes a new Strain Energy Function (SEF) for incompressible transversely isotropic hyperelastic materials, i. [2] The strain-energy density W $W$ for incompressible transversely isotropic hyperelastic materials depends on four independent invariants of the strain tensor. [3] In this study we propose, for each of the tissues involved, a new formulation of the so-called transversely isotropic hyperelastic model (TIHM). [4] The results obtained in three inverse problems regarding composite and transversely isotropic hyperelastic materials/structures with up to 17 unknown properties clearly demonstrate the validity of the proposed approach, which allows to significantly reduce the number of structural analyses with respect to previous SA/HS/BBBC formulations and improves robustness of metaheuristic search engines. [5]本文讨论了由具有纵向空隙的新胡克材料制成的横向各向同性超弹性细长梁的有限弯曲分析。 [1] 本文提出了一种用于不可压缩横向各向同性超弹性材料的新应变能函数 (SEF),即。 [2] 不可压缩横向各向同性超弹性材料的应变能密度 W$W$ 取决于应变张量的四个独立不变量。 [3] 在这项研究中,我们针对所涉及的每个组织提出了所谓的横向各向同性超弹性模型 (TIHM) 的新公式。 [4] 在关于具有多达 17 个未知属性的复合材料和横向各向同性超弹性材料/结构的三个逆问题中获得的结果清楚地证明了所提出方法的有效性,这可以显着减少相对于以前的 SA/HS/BBBC 的结构分析次数制定并提高元启发式搜索引擎的鲁棒性。 [5]
isotropic hyperelastic material 各向同性超弹性材料
The present paper proposes a new Strain Energy Function (SEF) for incompressible transversely isotropic hyperelastic materials, i. [1] Such a formulation is valid for general three-dimensional geometries and isotropic hyperelastic materials. [2] In this work, a phenomenological approach is used to construct a model of the effective material, where the inhomogeneous rubber-cord layer is replaced by an equivalent homogeneous anisotropic hyperelastic material. [3] Herein, the PV was assumed to behave like an anisotropic hyperelastic material with circumferentially-aligned fibers. [4] The strain-energy density W $W$ for incompressible transversely isotropic hyperelastic materials depends on four independent invariants of the strain tensor. [5] In FE simulation, the dermis and subcutaneous tissue were modeled as anisotropic hyperelastic material and isotropic elastic material, respectively. [6] To investigate the effect of probabilistic parameters on predicted mechanical responses, we study radial oscillations of cylindrical and spherical shells of stochastic incompressible isotropic hyperelastic material, formulated as quasi-equilibrated motions where the system is in equilibrium at every time instant. [7] Mechanical properties of PV leaflet were obtained from biaxial testing of human PV leaflet, and characterized by an anisotropic hyperelastic material model. [8] Two anisotropic hyperelastic material models were investigated and implemented in Abaqus as a user-defined material. [9] One of the most used models is the eight chain model, being its salient feature that it reproduces the overall response of isotropic hyperelastic materials with only two material parameters obtained from a tensile test. [10] The numerical scheme is also examined under compressive and tensile loads for isotropic and anisotropic hyperelastic materials. [11] We demonstrate our method in a finite deformation setting of an initially isotropic hyperelastic material of Ogden class which is often modeling biological tissue. [12] The continuum formulation uses an anisotropic hyperelastic material model in the framework of the geometrically exact Kirchhoff-Love shell theory and isogeometric finite elements. [13] The results obtained in three inverse problems regarding composite and transversely isotropic hyperelastic materials/structures with up to 17 unknown properties clearly demonstrate the validity of the proposed approach, which allows to significantly reduce the number of structural analyses with respect to previous SA/HS/BBBC formulations and improves robustness of metaheuristic search engines. [14]本文提出了一种用于不可压缩横向各向同性超弹性材料的新应变能函数 (SEF),即。 [1] 这种公式适用于一般的三维几何形状和各向同性超弹性材料。 [2] 在这项工作中,使用唯象学方法来构建有效材料模型,其中不均匀的橡胶帘线层被等效的均匀各向异性超弹性材料取代。 [3] 在此,假设 PV 表现为具有周向排列纤维的各向异性超弹性材料。 [4] 不可压缩横向各向同性超弹性材料的应变能密度 W$W$ 取决于应变张量的四个独立不变量。 [5] 在有限元模拟中,真皮和皮下组织分别被建模为各向异性超弹性材料和各向同性弹性材料。 [6] 为了研究概率参数对预测机械响应的影响,我们研究了随机不可压缩各向同性超弹性材料的圆柱壳和球壳的径向振荡,将其表述为准平衡运动,其中系统在每个时刻都处于平衡状态。 [7] PV 瓣叶的机械性能是通过人体 PV 瓣叶的双轴测试获得的,并通过各向异性超弹性材料模型进行表征。 [8] 在 Abaqus 中研究并实施了两个各向异性超弹性材料模型作为用户定义的材料。 [9] 最常用的模型之一是八链模型,它的显着特点是它再现了各向同性超弹性材料的整体响应,仅从拉伸试验中获得了两个材料参数。 [10] 数值方案也在各向同性和各向异性超弹性材料的压缩和拉伸载荷下进行了检查。 [11] 我们在 Ogden 类的初始各向同性超弹性材料的有限变形设置中演示了我们的方法,该材料通常对生物组织进行建模。 [12] 连续体公式在几何精确的 Kirchhoff-Love 壳理论和等几何有限元的框架内使用各向异性超弹性材料模型。 [13] 在关于具有多达 17 个未知属性的复合材料和横向各向同性超弹性材料/结构的三个逆问题中获得的结果清楚地证明了所提出方法的有效性,这可以显着减少相对于以前的 SA/HS/BBBC 的结构分析次数制定并提高元启发式搜索引擎的鲁棒性。 [14]
isotropic hyperelastic model 各向同性超弹性模型
The biological tissue and the silicone were modeled with a fiber-oriented anisotropic and isotropic hyperelastic model, respectively. [1] Various options and features of the proposed anisotropic hyperelastic model are investigated. [2] In this study we propose, for each of the tissues involved, a new formulation of the so-called transversely isotropic hyperelastic model (TIHM). [3] A new anisotropic hyperelastic model has been developed to model the deformation response of a knitted-fabric-reinforced rubber composite. [4] An anisotropic hyperelastic model based on strain energy decomposition is proposed. [5] We describe a non-linear anisotropic hyperelastic model appropriate for geomaterials, deriving the full stress-strain response from strain energy or complementary energy functions. [6] An anisotropic hyperelastic model (Gasser-Ogden-Holzapfel) was used to model the quasi-static behaviour of the tissue, whereas three different isotropic hyperelastic models (Fung, Gent and Ogden) were used to model the behaviour of scalp tissue at higher strain rates. [7]生物组织和有机硅分别用面向纤维的各向异性和各向同性超弹性模型进行建模。 [1] 研究了所提出的各向异性超弹性模型的各种选项和特征。 [2] 在这项研究中,我们针对所涉及的每个组织提出了所谓的横向各向同性超弹性模型 (TIHM) 的新公式。 [3] 已经开发了一种新的各向异性超弹性模型来模拟针织织物增强橡胶复合材料的变形响应。 [4] 提出了一种基于应变能分解的各向异性超弹性模型。 [5] 我们描述了一种适用于地质材料的非线性各向异性超弹性模型,从应变能或互补能量函数中推导出完整的应力-应变响应。 [6] 使用各向异性超弹性模型 (Gasser-Ogden-Holzapfel) 来模拟组织的准静态行为,而使用三种不同的各向同性超弹性模型 (Fung、Gent 和 Ogden) 来模拟头皮组织在更高应变率下的行为. [7]
isotropic hyperelastic constitutive 各向同性超弹性本构
This research presents the adaptation of an anisotropic hyperelastic constitutive model for predicting the experimentally observed in-plane, orthotropic, bi-modular and nonlinear-elastic responses. [1] We further demonstrate that for a nonlinear cardiac mechanics model, using our reconstructed LV geometries instead of manually extracted ones only moderately affects the inference of passive myocardial stiffness described by an anisotropic hyperelastic constitutive law. [2] The present work contributes towards a comprehensive DJ-TLED algorithm concerning isotropic and anisotropic hyperelastic constitutive models and GPU implementation. [3] In this paper, a nonlinear anisotropic hyperelastic constitutive model is proposed to consider this tension–shear coupling effect. [4] A nonlinear anisotropic hyperelastic constitutive model is developed for plain weave fabrics by considering biaxial tensile coupling. [5] First, the normal stresses of the inner reticulated fabric rubber composite are determined based on the anisotropic hyperelastic constitutive model and the corresponding hyperelastic material parameters under different temperatures are obtained using the normal stress equations to fit the experimental results. [6]本研究提出了采用各向异性超弹性本构模型来预测实验观察到的平面内、正交各向异性、双模和非线性弹性响应。 [1] 我们进一步证明,对于非线性心脏力学模型,使用我们重建的 LV 几何形状而不是手动提取的几何形状只会适度影响由各向异性超弹性本构定律描述的被动心肌刚度的推断。 [2] 目前的工作有助于建立一个关于各向同性和各向异性超弹性本构模型和 GPU 实现的综合 DJ-TLED 算法。 [3] 在本文中,提出了一种非线性各向异性超弹性本构模型来考虑这种拉剪耦合效应。 [4] 考虑双轴拉伸耦合,建立了平纹织物非线性各向异性超弹性本构模型。 [5] 首先,基于各向异性超弹性本构模型确定内网布橡胶复合材料的法向应力,利用法向应力方程拟合实验结果,得到不同温度下相应的超弹性材料参数。 [6]
isotropic hyperelastic behavior
The objective of the current study is to use the Small On Large (SOL) theory to linearize the anisotropic hyperelastic behavior in order to propose a reduced-order model for FSI simulations of the aorta. [1] The non-affine equal-force model is compared to the common affine model and a hybrid equal-force model from the literature, when considering the isotropic hyperelastic behavior without damage of rubber materials presenting chains of various lengths. [2]当前研究的目的是使用小到大 (SOL) 理论来线性化各向异性超弹性行为,以便为主动脉的 FSI 模拟提出降阶模型。 [1] 非仿射等力模型与文献中的普通仿射模型和混合等力模型进行了比较,考虑到各向同性的超弹性行为而不会损坏具有不同长度链的橡胶材料。 [2]
isotropic hyperelastic strain
In the present study, a compressible anisotropic hyperelastic strain energy density function (SEDF) is developed to capture the in-plane nonlinear elastic responses of a commercial Fiberglass/Phenolic hexagonal cell honeycomb core under large deformations. [1] A new anisotropic finite strain viscoelastic model is presented, which is based on the Holzapfel type anisotropic hyperelastic strain-energy function. [2]在本研究中,开发了一种可压缩的各向异性超弹性应变能密度函数 (SEDF),以捕捉商业玻璃纤维/酚醛六角蜂窝蜂窝芯在大变形下的面内非线性弹性响应。 [1] 基于Holzapfel型各向异性超弹性应变能函数,提出了一种新的各向异性有限应变粘弹性模型。 [2]