Isotropic Compressible(各向同性可压缩)研究综述
Isotropic Compressible 各向同性可压缩 - An asymptotic plane strain analysis is carried out in order to study the notch problem in a homogeneous isotropic compressible hyperelastic material whose behavior is governed by the Blatz-Ko constitutive law. [1] We consider a model of the physically linear isotropic compressible material with six material parameters. [2] The Neo-Hookean isotropic compressible hyperelastic material model is considered. [3] We consider an isotropic compressible non-dissipative fluid with broken parity subject to free surface boundary conditions in two spatial dimensions. [4]为了研究均质各向同性可压缩超弹性材料中的缺口问题,进行了渐近平面应变分析,该材料的行为受 Blatz-Ko 本构定律控制。 [1] 我们考虑具有六个材料参数的物理线性各向同性可压缩材料模型。 [2] 考虑了 Neo-Hookean 各向同性可压缩超弹性材料模型。 [3] 我们考虑了一种各向同性的可压缩非耗散流体,其宇称破缺,在两个空间维度上受到自由表面边界条件的影响。 [4]
isotropic compressible hyperelastic 各向同性可压缩超弹性
An asymptotic plane strain analysis is carried out in order to study the notch problem in a homogeneous isotropic compressible hyperelastic material whose behavior is governed by the Blatz-Ko constitutive law. [1] The Neo-Hookean isotropic compressible hyperelastic material model is considered. [2]为了研究均质各向同性可压缩超弹性材料中的缺口问题,进行了渐近平面应变分析,该材料的行为受 Blatz-Ko 本构定律控制。 [1] 考虑了 Neo-Hookean 各向同性可压缩超弹性材料模型。 [2]