Isotropic Circular(各向同性圆形)研究综述
Isotropic Circular 各向同性圆形 - In this work a local Radial Basis Generated-Finite Differences method is used to investigate the electromagnetic scattering problem of an infinitely long anisotropic circular cylinder, described by two coupled complex partial differential equations. [1] As examples, for a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation striking a spheroid with a uniaxial anisotropic spheroid inclusion and a circular cylinder with a uniaxial anisotropic circular cylinder inclusion, the normalized differential scattering cross sections are calculated, and the scattering properties are analyzed concisely. [2] Anisotropic circular dichroism (ACD) spectroscopy of macroscopically aligned molecules reveals additional information about their excited states that is lost in the CD of randomly oriented solutions. [3] 2$ THz range and polarization-independent imaging results as an isotropic circular antenna. [4] Along with the sensing response, power fraction, scattering loss, effective mode area, and V parameter have been numerically computed by the full-vector finite element method with anisotropic circular perfect matched layers. [5] So, we propose a new computerized boundary element model for the solution of such problems and obtaining the three-temperature nonlinear generalized thermoelastic stresses in anisotropic circular cylindrical plate structures problems which are related with the proposed theory, where we used two-dimensional three temperature nonlinear radiative heat conduction equations coupled with electron, ion and phonon temperatures. [6] We present a continuum formulation to obtain the effects of surface residual stress and surface elastic constants on extensional and torsional stiffnesses of isotropic circular nanorods. [7] The present work deals with a new problem of thermoelasticity for an infinitely long and isotropic circular cylinder of temperature dependent physical properties. [8] For functionally gradient isotropic circular cylindrical shells, we propose the nonstationary heatconduction and thermoelasticity equations with appropriate boundary conditions. [9] The paper presents an analysis of an isotropic circular axisymmetric perforated plate loaded with concentrated force Pi applied in the geometric center of the plate using finite element software ANSYS. [10] The results have been verified with the help of convergence study in terms of the number of discretization nodes and by comparison with the results of isotropic circular plates and of laminated circular/annular plates available in the literature. [11] 2$ THz range and polarization-independent imaging results as an isotropic circular antenna. [12] This paper deals with the analysis of transverse electric (TE) mode resonant frequency using a cylindrical coordinate system-based finite-difference time-domain (FDTD) method for anisotropic circular dielectric resonator. [13]在这项工作中,使用局部径向基生成-有限差分方法来研究无限长各向异性圆柱体的电磁散射问题,该问题由两个耦合的复偏微分方程描述。 [1] 例如,对于高斯光束、零级贝塞尔光束和赫兹电偶极子辐射撞击具有单轴各向异性球体夹杂物的球体和具有单轴各向异性圆柱体夹杂物的圆柱体,计算归一化微分散射截面,并且简明地分析了散射特性。 [2] 宏观排列分子的各向异性圆二色性 (ACD) 光谱揭示了有关其激发态的额外信息,这些信息在随机取向溶液的 CD 中丢失。 [3] 2$ THz 范围和偏振无关成像结果作为各向同性圆形天线。 [4] 除了传感响应,功率分数、散射损耗、有效模式面积和 V 参数已通过具有各向异性圆形完美匹配层的全矢量有限元方法进行数值计算。 [5] 因此,我们提出了一种新的计算机化边界元模型来解决这些问题并获得与所提出的理论相关的各向异性圆柱板结构问题中的三温度非线性广义热弹性应力,其中我们使用二维三温度非线性辐射热传导方程与电子、离子和声子温度耦合。 [6] 我们提出了一个连续公式来获得表面残余应力和表面弹性常数对各向同性圆形纳米棒的拉伸和扭转刚度的影响。 [7] 目前的工作处理了一个无限长且各向同性的圆柱体的热弹性新问题,该圆柱体具有与温度相关的物理特性。 [8] 对于功能梯度各向同性圆柱壳,我们提出了具有适当边界条件的非平稳导热和热弹性方程。 [9] 本文介绍了使用有限元软件 ANSYS 对在板的几何中心施加集中力 Pi 加载的各向同性圆形轴对称穿孔板的分析。 [10] 借助离散节点数量方面的收敛性研究以及与文献中可用的各向同性圆形板和层压圆形/环形板的结果进行比较,验证了结果。 [11] 2$ THz 范围和偏振无关成像结果作为各向同性圆形天线。 [12] 本文使用基于圆柱坐标系的有限差分时域 (FDTD) 方法分析各向异性圆形介电谐振器的横向电 (TE) 模式谐振频率。 [13]
isotropic circular cylinder 各向同性圆柱
In this work a local Radial Basis Generated-Finite Differences method is used to investigate the electromagnetic scattering problem of an infinitely long anisotropic circular cylinder, described by two coupled complex partial differential equations. [1] As examples, for a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation striking a spheroid with a uniaxial anisotropic spheroid inclusion and a circular cylinder with a uniaxial anisotropic circular cylinder inclusion, the normalized differential scattering cross sections are calculated, and the scattering properties are analyzed concisely. [2] The present work deals with a new problem of thermoelasticity for an infinitely long and isotropic circular cylinder of temperature dependent physical properties. [3]在这项工作中,使用局部径向基生成-有限差分方法来研究无限长各向异性圆柱体的电磁散射问题,该问题由两个耦合的复偏微分方程描述。 [1] 例如,对于高斯光束、零级贝塞尔光束和赫兹电偶极子辐射撞击具有单轴各向异性球体夹杂物的球体和具有单轴各向异性圆柱体夹杂物的圆柱体,计算归一化微分散射截面,并且简明地分析了散射特性。 [2] 目前的工作处理了一个无限长且各向同性的圆柱体的热弹性新问题,该圆柱体具有与温度相关的物理特性。 [3]
isotropic circular antenna 各向同性圆形天线
2$ THz range and polarization-independent imaging results as an isotropic circular antenna. [1] 2$ THz range and polarization-independent imaging results as an isotropic circular antenna. [2]2$ THz 范围和偏振无关成像结果作为各向同性圆形天线。 [1] 2$ THz 范围和偏振无关成像结果作为各向同性圆形天线。 [2]
isotropic circular cylindrical 各向同性圆柱
So, we propose a new computerized boundary element model for the solution of such problems and obtaining the three-temperature nonlinear generalized thermoelastic stresses in anisotropic circular cylindrical plate structures problems which are related with the proposed theory, where we used two-dimensional three temperature nonlinear radiative heat conduction equations coupled with electron, ion and phonon temperatures. [1] For functionally gradient isotropic circular cylindrical shells, we propose the nonstationary heatconduction and thermoelasticity equations with appropriate boundary conditions. [2]因此,我们提出了一种新的计算机化边界元模型来解决这些问题并获得与所提出的理论相关的各向异性圆柱板结构问题中的三温度非线性广义热弹性应力,其中我们使用二维三温度非线性辐射热传导方程与电子、离子和声子温度耦合。 [1] 对于功能梯度各向同性圆柱壳,我们提出了具有适当边界条件的非平稳导热和热弹性方程。 [2]