Discontinuous Lyapunov(不连续的李雅普诺夫)研究综述
Discontinuous Lyapunov 不连续的李雅普诺夫 - Technically, the work integrates with the new type of discontinuous Lyapunov-Krasovskii functional candidate with integral terms, several delay-dependent stability conditions, and Wirtinger-based integral inequality. [1] The closed-loop system is formulated through a hybrid systems framework, within which stability is proven using a discontinuous Lyapunov-like function and a meagre-limsup invariance argument. [2] Using the discontinuous Lyapunov-Krasoskii functional (LKF) approach and the free-matrix-based integral inequality bounds processing technique, a stability condition with less conservativeness has been obtained, and the controller of the sampled-data T-S fuzzy system with the quantized state has been designed. [3] In this paper, the discontinuous Lyapunov-based method is proposed to reject time variant and bounded disturbances. [4]从技术上讲,这项工作与具有积分项、几个延迟相关的稳定性条件和基于 Wirtinger 的积分不等式的新型不连续 Lyapunov-Krasovskii 候选函数相结合。 [1] 闭环系统是通过混合系统框架制定的,在该框架中,使用不连续的 Lyapunov 样函数和 meagre-limsup 不变性参数证明了稳定性。 [2] 采用不连续的Lyapunov-Krasoskii泛函(LKF)方法和基于自由矩阵的积分不等式界处理技术,得到了一个保守性较小的稳定条件,具有量化状态的采样数据T-S模糊系统的控制器具有被设计。 [3] 在本文中,提出了基于不连续李雅普诺夫的方法来拒绝时变和有界干扰。 [4]
linear switched singular
By using a multiple discontinuous Lyapunov function approach and exploring the properties of mode-dependent average dwell time(MDADT) switching signal, new sufficient conditions of E-exponential stability for linear switched singular systems are presented. [1] By using a multiple discontinuous Lyapunov function approach and adopting the mode-dependent average dwell time (MDADT) switching signals, new sufficient conditions of E-exponential stability and l 2 − gain analysis for linear switched singular systems are presented. [2] First, by constructing an appropriate multiple discontinuous Lyapunov function, new sufficient conditions of E-exponential stability for linear switched singular systems are established. [3]通过使用多重不连续Lyapunov函数方法和探索模式相关平均停留时间(MDADT)切换信号的性质,提出了线性切换奇异系统E-指数稳定性的新充分条件。 [1] 通过使用多重不连续Lyapunov函数方法并采用与模式相关的平均停留时间(MDADT)切换信号,提出了线性切换奇异系统的E-指数稳定性和l 2 - 增益分析的新充分条件。 [2] nan [3]
Multiple Discontinuous Lyapunov 多重不连续李雅普诺夫
To solve the problem, a general multiple discontinuous Lyapunov functions (MDLFs) analysi. [1] Moreover, multiple discontinuous Lyapunov function (MDLF) approach, which is less conservative than the traditional multiple Lyapunov function (MLF) method, is used to analyse the closed-loop stability and performance by incorporating the idea of AED–ADT. [2] By integrating the new strategy with multiple discontinuous Lyapunov function approach, one gets some stability results of switched singular systems with stable and unstable subsystems. [3] To enlarge the room for switching scheme design, a new multiple discontinuous Lyapunov functions (MDLFs) method is developed, and a novel mode-dependent average dwell time (MDADT) tradeoff strategy is explored. [4] By dividing the dwell time into several segments, and constructing a reverse timer which starts timing at the end of each segment, we propose a new reverse-timer-dependent multiple discontinuous Lyapunov function (RTDMDLF), which is more general than the multiple Lyapunov function (MLF) and the multiple discontinuous Lyapunov function (MDLF). [5] By using a multiple discontinuous Lyapunov function approach and exploring the properties of mode-dependent average dwell time(MDADT) switching signal, new sufficient conditions of E-exponential stability for linear switched singular systems are presented. [6] By using a multiple discontinuous Lyapunov function approach and adopting the mode-dependent average dwell time (MDADT) switching signals, new sufficient conditions of E-exponential stability and l 2 − gain analysis for linear switched singular systems are presented. [7] The discrete-time multiple discontinuous Lyapunov function is also utilized for the analysis. [8] It is pointed out in the paper that the multiple Lyapunov function (MLF) and the multiple discontinuous Lyapunov function (MDLF) can be regarded as special cases of the proposed MCLF and MPCLF, respectively. [9] First, by constructing an appropriate multiple discontinuous Lyapunov function, new sufficient conditions of E-exponential stability for linear switched singular systems are established. [10]为了解决这个问题,一个通用的多重不连续李雅普诺夫函数(MDLFs)分析。 [1] 此外,与传统的多重李雅普诺夫函数(MLF)方法相比,多重不连续李雅普诺夫函数(MDLF)方法结合AED-ADT的思想,用于分析闭环稳定性和性能。 [2] 通过将新策略与多个不连续Lyapunov函数方法相结合,得到了具有稳定子系统和不稳定子系统的切换奇异系统的一些稳定性结果。 [3] 为了扩大切换方案设计的空间,开发了一种新的多不连续 Lyapunov 函数 (MDLF) 方法,并探索了一种新的模式相关平均停留时间 (MDADT) 权衡策略。 [4] 通过将驻留时间分成若干段,并构造一个在每段结束时开始计时的反向定时器,我们提出了一种新的依赖于反向定时器的多不连续李雅普诺夫函数(RTDMDLF),它比多李雅普诺夫函数更通用(MLF) 和多重不连续 Lyapunov 函数 (MDLF)。 [5] 通过使用多重不连续Lyapunov函数方法和探索模式相关平均停留时间(MDADT)切换信号的性质,提出了线性切换奇异系统E-指数稳定性的新充分条件。 [6] 通过使用多重不连续Lyapunov函数方法并采用与模式相关的平均停留时间(MDADT)切换信号,提出了线性切换奇异系统的E-指数稳定性和l 2 - 增益分析的新充分条件。 [7] nan [8] nan [9] nan [10]
Constructing Discontinuous Lyapunov
By constructing discontinuous Lyapunov functions, it is proved that the proposed ET controllers guarantee the stability and通过构造不连续的 Lyapunov 函数,证明了所提出的 ET 控制器保证了稳定性和 <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-公式>闭环系统的性能。 [1] 通过构造不连续的 Lyapunov 函数,证明了所提出的 ET 控制器保证了闭环系统的稳定性和 H∞ 性能。 [2]
Dependent Discontinuous Lyapunov
To reflect more realistic the information on both the intervals e(t) to $$e(t_{k})$$ and e(t) to $$e(t_{k+1})$$ , a novel two-side sampling-interval-dependent discontinuous Lyapunov functional (DLF) is constructed, which can fully utilizes the available characteristics of actual sampling information. [1] By taking advantage of characteristic information on the whole sampling interval, a new two-sided sampling-interval-dependent discontinuous Lyapunov functional is first constructed, which depends on the available information of both the intervals from tk to t and from t to t k + 1. [2]为了更真实地反映区间 e(t) 到 $$e(t_{k})$$ 的信息 和 e(t) 到 $$e(t_{k+1})$$ ,构建了一种新颖的两侧采样间隔依赖的不连续Lyapunov泛函(DLF),它可以充分利用实际采样信息的可用特性。 [1] 利用整个采样区间的特征信息,首先构造了一个新的双边采样区间依赖的不连续 Lyapunov 泛函,它依赖于 tk 到 t 和 t 到 t k + 1 的区间的可用信息. [2]
Improved Discontinuous Lyapunov
This paper is devoted to proposing improved discontinuous Lyapunov functionals for the stability analysis of sampled-data systems. [1] Firstly, constructing an improved discontinuous Lyapunov-Krasovskii function (LKF), which is fully considered the characteristics of sampled-data to reduce the conservativeness. [2]本文致力于提出改进的不连续 Lyapunov 泛函用于采样数据系统的稳定性分析。 [1] nan [2]
Designing Discontinuous Lyapunov
By designing discontinuous Lyapunov function with time-varying Lyapunov matrix, sufficient conditions in terms of linear matrix inequalities (LMIs) are obtained to ensure the stability of the closed-loop system. [1] By designing discontinuous Lyapunov function with time-varying Lyapunov matrix, sufficient conditions in terms of linear matrix inequalities (LMIs) are obtained to ensure the stability of the closed-loop system. [2]通过设计具有时变Lyapunov矩阵的不连续Lyapunov函数,得到了线性矩阵不等式(LMI)的充分条件,以保证闭环系统的稳定性。 [1] nan [2]
discontinuous lyapunov function 不连续的李雅普诺夫函数
The estimation error is analyzed via a discontinuous Lyapunov function, and an e -independent observer gain is designed. [1] By constructing discontinuous Lyapunov functions, it is proved that the proposed ET controllers guarantee the stability and通过不连续的Lyapunov函数分析估计误差,并设计了与e无关的观测器增益。 [1] 通过构造不连续的 Lyapunov 函数,证明了所提出的 ET 控制器保证了稳定性和 <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-公式>闭环系统的性能。 [2] 为了解决这个问题,一个通用的多重不连续李雅普诺夫函数(MDLFs)分析。 [3] 根据一个不连续的Lyapunov函数,给出了保证闭环系统渐近稳定并满足H∞性能的充分条件。 [4] 通过建立不连续的李雅普诺夫函数(LF),证明了所构造的控制器能够保证系统的全局一致最终有界性(uubs)。 [5] 使用特殊构造的不连续 Lyapunov 函数进行稳定性分析。 [6] 此外,与传统的多重李雅普诺夫函数(MLF)方法相比,多重不连续李雅普诺夫函数(MDLF)方法结合AED-ADT的思想,用于分析闭环稳定性和性能。 [7] 通过将新策略与多个不连续Lyapunov函数方法相结合,得到了具有稳定子系统和不稳定子系统的切换奇异系统的一些稳定性结果。 [8] 通过设计具有时变Lyapunov矩阵的不连续Lyapunov函数,得到了线性矩阵不等式(LMI)的充分条件,以保证闭环系统的稳定性。 [9] 提出了一种构造不连续Lyapunov函数的方法,用于获得所研究方程的零平衡位置渐近稳定的充分条件。 [10] 为了扩大切换方案设计的空间,开发了一种新的多不连续 Lyapunov 函数 (MDLF) 方法,并探索了一种新的模式相关平均停留时间 (MDADT) 权衡策略。 [11] 通过将驻留时间分成若干段,并构造一个在每段结束时开始计时的反向定时器,我们提出了一种新的依赖于反向定时器的多不连续李雅普诺夫函数(RTDMDLF),它比多李雅普诺夫函数更通用(MLF) 和多重不连续 Lyapunov 函数 (MDLF)。 [12] 通过构造不连续的 Lyapunov 函数,证明了所提出的 ET 控制器保证了闭环系统的稳定性和 H∞ 性能。 [13] 通过使用多重不连续Lyapunov函数方法和探索模式相关平均停留时间(MDADT)切换信号的性质,提出了线性切换奇异系统E-指数稳定性的新充分条件。 [14] 通过使用多重不连续Lyapunov函数方法并采用与模式相关的平均停留时间(MDADT)切换信号,提出了线性切换奇异系统的E-指数稳定性和l 2 - 增益分析的新充分条件。 [15] nan [16] nan [17] nan [18] nan [19] nan [20]
discontinuous lyapunov functional 不连续的 Lyapunov 泛函
To reflect more realistic the information on both the intervals e(t) to $$e(t_{k})$$ and e(t) to $$e(t_{k+1})$$ , a novel two-side sampling-interval-dependent discontinuous Lyapunov functional (DLF) is constructed, which can fully utilizes the available characteristics of actual sampling information. [1] This paper is devoted to proposing improved discontinuous Lyapunov functionals for the stability analysis of sampled-data systems. [2] By taking advantage of characteristic information on the whole sampling interval, a new two-sided sampling-interval-dependent discontinuous Lyapunov functional is first constructed, which depends on the available information of both the intervals from tk to t and from t to t k + 1. [3] The sampled-data with stochastic sampling is used to design the controller by a discontinuous Lyapunov functional. [4] Some discontinuous Lyapunov functionals and zero equation are employed to deal with a sampled-data pattern. [5] For a special case that the sampled-data controller suffers constant input delay, a discontinuous Lyapunov functional is presented based on the vector extension of Wirtinger’s inequality. [6] In order to make full use of the sawtooth structure characteristic of the sampling input delay, a discontinuous Lyapunov functional is proposed. [7]为了更真实地反映区间 e(t) 到 $$e(t_{k})$$ 的信息 和 e(t) 到 $$e(t_{k+1})$$ ,构建了一种新颖的两侧采样间隔依赖的不连续Lyapunov泛函(DLF),它可以充分利用实际采样信息的可用特性。 [1] 本文致力于提出改进的不连续 Lyapunov 泛函用于采样数据系统的稳定性分析。 [2] 利用整个采样区间的特征信息,首先构造了一个新的双边采样区间依赖的不连续 Lyapunov 泛函,它依赖于 tk 到 t 和 t 到 t k + 1 的区间的可用信息. [3] 使用随机采样的采样数据通过不连续的 Lyapunov 泛函设计控制器。 [4] nan [5] nan [6] nan [7]