## Randomized Response(隨機響應)到底是什麼？

Randomized Response 隨機響應 - Background: Nonrandomized response (NRR) models are a new generation of surveys for sensitive issues.^{[1]}Warner’s randomized response (RR) model is used to collect sensitive information for a broad range of surveys, but it possesses several limitations such as lack of reproducibility, higher costs and it is not feasible for mail questionnaires.

^{[2]}The randomized responses procedure due to Warner (1965) is used for eliminating answer biases.

^{[3]}We implement our procedure and use it for (dis)proving privacy bounds for many well-known examples, including randomized response, histogram, report noisy max and sparse vector.

^{[4]}The key idea behind our approach is to marry two techniques together, namely, sampling (used for approximate computation) and randomized response (used for privacypreserving analytics).

^{[5]}In this research, we address this challenge using a combination of a randomized response (RR) approach for data collection and a multiscale item response theory (IRT) model for data analysis.

^{[6]}We consider a problem of analyzing a global property of private data through randomized responses subject to a certain rule, where private data are used for another cryptographic protocol, e.

^{[7]}The seminal work of Warner (1965) on randomized response has motivated the development of a fruitful theory.

^{[8]}The key idea behind PRIVAPPROX is to combine two techniques together, namely, sampling (used for approximate computation) and randomized response (used for privacy-preserving analytics).

^{[9]}

背景：非隨機響應 (NRR) 模型是針對敏感問題的新一代調查。

^{[1]}Warner 的隨機響應 (RR) 模型用於為廣泛的調查收集敏感信息，但它具有一些局限性，例如缺乏可重複性、成本較高，並且不適用於郵寄問卷。

^{[2]}Warner (1965) 的隨機響應程序用於消除答案偏差。

^{[3]}我們實現了我們的程序並將其用於（反）證明許多知名示例的隱私邊界，包括隨機響應、直方圖、報告噪聲最大值和稀疏向量。

^{[4]}我們方法背後的關鍵思想是將兩種技術結合在一起，即採樣（用於近似計算）和隨機響應（用於隱私保護分析）。

^{[5]}在這項研究中，我們結合使用用於數據收集的隨機響應 (RR) 方法和用於數據分析的多尺度項目響應理論 (IRT) 模型來應對這一挑戰。

^{[6]}我們考慮通過遵循特定規則的隨機響應來分析私有數據的全局屬性的問題，其中私有數據用於另一種加密協議，例如。

^{[7]}Warner (1965) 關於隨機反應的開創性工作推動了富有成果的理論的發展。

^{[8]}PRIVAPPROX 背後的關鍵思想是將兩種技術結合在一起，即採樣（用於近似計算）和隨機響應（用於隱私保護分析）。

^{[9]}

## local differential privacy

Especially our two proposed methods are the Laplace Mechanism-based Database Watermarking (LMDW) and Randomized Response-based Database Watermarking (RRDW) for two classical local differential privacy mechanisms the Laplace Mechanism (LM) and the Randomized Response (RR) respectively.^{[1]}A recommendation algorithm based on collaborative filtering, matrix factorization as well as the randomized response is proposed, which satisfies local differential privacy (LDP).

^{[2]}Second, we present a generalized randomized response mechanism to achieve ( ε , δ ) -local differential privacy for location privacy preservation, which obtains the upper bound of error, and serve it as the basic building block to design a unified private continuous location sharing framework with an untrusted server.

^{[3]}

特別是我們提出的兩種方法是基於拉普拉斯機制的數據庫水印（LMDW）和基於隨機響應的數據庫水印（RRDW），分別用於兩種經典的局部差分隱私機制拉普拉斯機制（LM）和隨機響應（RR）。

^{[1]}提出了一種基於協同過濾、矩陣分解和隨機響應的推薦算法，滿足局部差分隱私（LDP）的要求。

^{[2]}其次，我們提出了一種廣義的隨機響應機制來實現（ε，δ）-局部差分隱私，用於位置隱私保護，獲得誤差的上限，並將其作為設計統一私有連續位置共享框架的基本構建塊使用不受信任的服務器。

^{[3]}

## unequal probability sampling

There are nine well-written chapters covering a range of topics includingmotivation to sampling, concepts of population versus sample, random sampling with and without replacement, estimation, sample size determination, unequal probability sampling, stratified sampling, cluster sampling, multi-stage sampling, regression estimation, super population modeling, Bayesian methods, spatial smoothing, successive sampling, handling non-responses, imputations, repeated sampling, randomized responses to obtain better responses, indirect questioning, small domain statistics, network sampling, adaptive sampling, and Jack-knifing among others.^{[1]}ABSTRACT In this paper, Abdelfatah and Mazloum's (2015) two-stage randomized response model is extended to unequal probability sampling and stratified unequal probability sampling, both with and without replacement.

^{[2]}

有九章寫得很好，涵蓋了一系列主題，包括抽樣的動機、總體與樣本的概念、帶和不帶放回的隨機抽樣、估計、樣本量確定、不等概率抽樣、分層抽樣、整群抽樣、多階段抽樣、回歸估計、超級人口建模、貝葉斯方法、空間平滑、連續採樣、處理無響應、插補、重複採樣、隨機響應以獲得更好的響應、間接提問、小域統計、網絡採樣、自適應採樣和 Jack-knifing其中。

^{[1]}摘要 在本文中，Abdelfatah 和 Mazloum (2015) 的兩階段隨機響應模型被擴展到不等概率抽樣和分層不等概率抽樣，無論有沒有放回。

^{[2]}

## Optional Randomized Response

Thus, the optional randomized response model , where k is a random variable having value 1 if the response is scrambled and 0 otherwise, was considered for finding out Approximate Optimum Strata Boundaries by minimizing the variance of the estimator.^{[1]}and Huang considered optional randomized response techniques where the probability of choosing the randomized (or direct) response is fixed for all the respondents.

^{[2]}In this study, we propose optional randomized response technique (RRT) models in binary response situation.

^{[3]}Gupta et al (2002) suggested an optional randomized response model under the assumption that the mean of the scrambling variable S is ‘unity’ [i.

^{[4]}This is done by using optional randomized response.

^{[5]}We propose two optional randomized response models (ORRMs) to increase the respondents cooperation.

^{[6]}

因此，考慮了可選的隨機響應模型 ，其中 k 是隨機變量，如果響應被加擾，則值為 1，否則為 0，被考慮用於通過最小化估計量的方差來找出近似最優地層邊界。

^{[1]}Huang 考慮了可選的隨機響應技術，其中選擇隨機（或直接）響應的概率對於所有受訪者都是固定的。

^{[2]}在這項研究中，我們提出了二元響應情況下的可選隨機響應技術 (RRT) 模型。

^{[3]}nan

^{[4]}nan

^{[5]}nan

^{[6]}

## Stage Randomized Response

Our solution relies on a distributed client-server architecture and a two-stage Randomized Response algorithm, along with an implementation on the popular recommendation model, Matrix Factorization (MF).^{[1]}ABSTRACT In this paper, Abdelfatah and Mazloum's (2015) two-stage randomized response model is extended to unequal probability sampling and stratified unequal probability sampling, both with and without replacement.

^{[2]}The rare stigmatized parameter is estimated using an ameliorated two-stage randomized response model under stratified sampling and stratified double sampling schemes.

^{[3]}

我們的解決方案依賴於分佈式客戶端-服務器架構和兩階段隨機響應算法，以及流行的推薦模型矩陣分解 (MF) 的實現。

^{[1]}摘要 在本文中，Abdelfatah 和 Mazloum (2015) 的兩階段隨機響應模型被擴展到不等概率抽樣和分層不等概率抽樣，無論有沒有放回。

^{[2]}nan

^{[3]}

## Scrambled Randomized Response

In this study, we consider variance estimation procedure using scrambled randomized response for sensitive variable using multi-auxiliary variables in multi-phase sampling.^{[1]}With the intention to control a true swapping between the efficiency and the privacy protection this paper introduces a scrambled randomized response (SRR) model to be alternative of Saha’s scrambling mechanism.

^{[2]}

在這項研究中，我們考慮使用多階段抽樣中的多輔助變量對敏感變量使用加擾隨機響應的方差估計程序。

^{[1]}nan

^{[2]}

## Question Randomized Response

In this paper, we developed a new unique unrelated question randomized response model in which each card has two questions, either both questions on the sensitive characteristics or both questions on the two unrelated characteristics.^{[1]}A shrinkage estimator of population mean using a prior information is proposed under unrelated question randomized response model where one of the two questions presented to the respondents is non-stigmatized and unrelated to the stigmatized character.

^{[2]}

在本文中，我們開發了一種新的獨特的無關問題隨機響應模型，其中每張卡片有兩個問題，要么都是關於敏感特徵的問題，要么是關於兩個不相關特徵的問題。

^{[1]}在無關問題隨機響應模型下提出了使用先驗信息的人口均值收縮估計量，其中向受訪者提出的兩個問題之一是非污名化且與污名化特徵無關。

^{[2]}

## Symmetric Randomized Response

We show that the Bayesian-Nash equilibrium can be in the form of either a symmetric randomized response (SR) strategy or an informative non-disclosive (ND) strategy.^{[1]}Our findings reveal that, the Bayesian-Nash equilibrium can be in the form of either a symmetric randomized response (SR) strategy or an informative non-disclosive (ND) strategy.

^{[2]}

我們表明，貝葉斯-納什均衡可以採用對稱隨機響應 (SR) 策略或信息非公開 (ND) 策略的形式。

^{[1]}nan

^{[2]}

## Alternative Randomized Response

In this article, alternative randomized response models are proposed, which make use of sum of quantitative scores generated from two decks of cards being used in a survey.^{[1]}This paper proposes an alternative randomized response technique by improving existing works on tripartite randomized response technique (TRRT) using unrelated questions.

^{[2]}

在本文中，提出了替代隨機響應模型，該模型利用調查中使用的兩副紙牌產生的定量分數之和。

^{[1]}本文通過使用不相關的問題改進三方隨機響應技術 (TRRT) 的現有工作，提出了一種替代的隨機響應技術。

^{[2]}

## New Randomized Response 新的隨機響應

This paper suggests a new randomized response model useful for gathering information on quantitative sensitive variable such as drug usage, tax evasion and induced abortions etc.^{[1]}In this article, we propose a new randomized response model to estimate the population total of a sensitive variable of quantitative nature.

^{[2]}

本文提出了一種新的隨機響應模型，可用於收集定量敏感變量的信息，例如藥物使用、逃稅和人工流產等。

^{[1]}在本文中，我們提出了一種新的隨機響應模型來估計數量性質的敏感變量的總體總數。

^{[2]}

## randomized response technique 隨機反應技術

The use of scramble variable is considered herein randomized response technique to estimate the parameters of the sensitive variable.^{[1]}In this study, we introduce a mixture binary Randomized Response Technique (RRT) model by combining the elements of the Greenberg Unrelated Question model and the Warner Indirect Question model.

^{[2]}Nonetheless, they have a very sparse presence in finite population sampling when sensitive topics are investigated and data are obtained by means of the randomized response technique (RRT), a survey method based on the principle that sensitive questions must not be asked directly to the respondents.

^{[3]}For more reliable information, the randomized response technique is often used.

^{[4]}We propose simple internal consistency tests for two such methods, the list experiment and the randomized response technique (its Warner and Crosswise variants).

^{[5]}We compared how indirect (randomized response technique) and direct questioning techniques performed when assessing non-sensitive (fish consumption, used as negative control) and sensitive (illegal consumption of wild animals) behaviors across an urban gradient (small towns, large towns, and the large city of Manaus) in the Brazilian Amazon.

^{[6]}The randomized response technique (RRT) is an effective method designed to obtain the stigmatized information from respondents while assuring the privacy.

^{[7]}Unrelated characteristics model (URL) is a type of randomized response technique (RRT) used to estimate finite population proportion of individuals bearing such a sensitive characteristic whose com.

^{[8]}To obtain trustworthy data and to reduce false response bias, a technique, known as randomized response technique, is now being used in many surveys.

^{[9]}The present study proposes a generalized mean estimator for a sensitive variable using a non-sensitive auxiliary variable in the presence of measurement errors based on the Randomized Response Technique (RRT).

^{[10]}Tripartite Randomized Response Technique (TRRT) and the Direct Method (DM) were applied in the estimation of proportion.

^{[11]}and Huang considered optional randomized response techniques where the probability of choosing the randomized (or direct) response is fixed for all the respondents.

^{[12]}We used the randomized response technique (RRT) to estimate the prevalence and drivers of illegal hunting targeting four focal bird taxa (barbets, bulbuls, partridges, and pheasants).

^{[13]}In this work, we employ advancements in randomized response techniques to overcome the neglect of respondents to truthfully reveal deceitful behaviour.

^{[14]}The probably most traditional method is the Randomized Response Technique by Warner (1965).

^{[15]}In this study, we propose optional randomized response technique (RRT) models in binary response situation.

^{[16]}To mitigate the response distortion arising from dishonest answers to sensitive questions, the randomized response technique (RRT) is a useful and effective statistical method.

^{[17]}Much empirical evidence has shown that the randomized response technique is useful for the collection of truthful responses.

^{[18]}ABSTRACT This study focuses on the estimation of population mean of a sensitive variable in stratified random sampling based on randomized response technique (RRT) when the observations are contaminated by measurement errors (ME).

^{[19]}This paper investigated the rule breaking conduct in a Nigerian protected forest reserve area in order to exploit natural resources using Randomized Response Technique (RRT) for data collection.

^{[20]}In this paper, we improve the efficiency of Koyuncu et al (2014)’s estimator of population mean of sensitive variable by replacing Traditional Randomized response technique with Optional Randomized response technique as suggested by Gupta et al (2014).

^{[21]}This paper proposes an alternative randomized response technique by improving existing works on tripartite randomized response technique (TRRT) using unrelated questions.

^{[22]}We measured the prevalence of competition manipulation by German elite athletes and the total percentage of these athletes who had been asked to participate in match fixing by using the randomized response technique.

^{[23]}For the discussion of these different aspects of privacy protection, a family of randomized response techniques enabling the tailoring of the design’s privacy protection to the respondents is presented as representative of indirect questioning designs.

^{[24]}The paper formalizes Warner's (1965) randomized response technique (RRT) as a game and implements it experimentally, thus linking game theoretic approaches to randomness in communication with survey practice in the field and a novel implementation in the lab.

^{[25]}2013; Lyall, Blair, and Imai 2013), randomized response technique (Blair, Imai, and Zhou 2015), or the list experiment.

^{[26]}In this article, we propose a new partial randomized response technique (RRT) model to estimate the mean of the number of persons possessing a rare sensitive attribute using the Poisson distribution.

^{[27]}Indirect question formats, such as the Item Count Technique (ICT) and the Randomized Response Techniques (RRT), including the Crosswise Model (CM) and the Triangular Model (TM), have been developed to protect respondents’ privacy by design to elicit more truthful answers.

^{[28]}To resolve the privacy issues in such scenarios, the DPWeVote protocol is proposed which incorporates Randomized Response technique and consists the following three phases: the Randomized Weights Collection phase, the Randomized Opinions Collection phase, and the Voting Results Release phase.

^{[29]}We suggest for further study an idea to construct strata boundaries using ranked set sampling for randomized response technique, introduced by Bouza (2009).

^{[30]}Various indirect questioning methods have been developed to reduce SDB and increase data reliability, one of them being the randomized response technique (RRT).

^{[31]}In contrast with former variants of Randomized Response Techniques (RRTs), the crosswise model neither offers a self-protective response strategy, nor does it require a random device.

^{[32]}In contrast with former variants of Randomized Response Techniques (RRTs), the crosswise model neither offers a self-protective response strategy, nor does it require a random device.

^{[33]}

在本文中考慮使用打亂變量隨機響應技術來估計敏感變量的參數。

^{[1]}在這項研究中，我們通過結合格林伯格無關問題模型和華納間接問題模型的元素，引入了混合二元隨機響應技術 (RRT) 模型。

^{[2]}nan

^{[3]}nan

^{[4]}nan

^{[5]}nan

^{[6]}nan

^{[7]}nan

^{[8]}nan

^{[9]}nan

^{[10]}三方隨機響應技術（TRRT）和直接法（DM）被應用於比例估計。

^{[11]}Huang 考慮了可選的隨機響應技術，其中選擇隨機（或直接）響應的概率對於所有受訪者都是固定的。

^{[12]}我們使用隨機響應技術 (RRT) 來估計針對四種重點鳥類分類群（鷓鴣、鷓鴣、鷓鴣和雉雞）的非法狩獵的流行率和驅動因素。

^{[13]}在這項工作中，我們採用了隨機響應技術的進步來克服受訪者忽視真實揭示欺騙行為的問題。

^{[14]}可能最傳統的方法是 Warner (1965) 的隨機響應技術。

^{[15]}在這項研究中，我們提出了二元響應情況下的可選隨機響應技術 (RRT) 模型。

^{[16]}為了減輕對敏感問題的不誠實回答引起的響應失真，隨機響應技術（RRT）是一種有用且有效的統計方法。

^{[17]}許多經驗證據表明，隨機響應技術對於收集真實響應很有用。

^{[18]}摘要 本研究側重於在觀測值受到測量誤差 (ME) 污染時，基於隨機響應技術 (RRT) 估計分層隨機抽樣中敏感變量的總體均值。

^{[19]}本文調查了尼日利亞森林保護區的違規行為，以利用隨機響應技術 (RRT) 收集數據來開發自然資源。

^{[20]}nan

^{[21]}本文通過使用不相關的問題改進三方隨機響應技術 (TRRT) 的現有工作，提出了一種替代的隨機響應技術。

^{[22]}我們使用隨機響應技術測量了德國精英運動員比賽操縱的普遍性以及這些運動員被要求參與比賽操縱的總百分比。

^{[23]}為了討論隱私保護的這些不同方面，提出了一系列隨機響應技術，可以為受訪者量身定制設計的隱私保護，作為間接提問設計的代表。

^{[24]}該論文將 Warner (1965) 的隨機響應技術 (RRT) 形式化為一種遊戲並通過實驗實現它，從而將博弈論方法與隨機性與現場調查實踐和實驗室中的新實施聯繫起來。

^{[25]}2013； Lyall、Blair 和 Imai 2013）、隨機響應技術（Blair、Imai 和 Zhou 2015）或列表實驗。

^{[26]}nan

^{[27]}已經開發了間接問題格式，例如項目計數技術 (ICT) 和隨機響應技術 (RRT)，包括交叉模型 (CM) 和三角模型 (TM)，旨在通過設計來保護受訪者的隱私，以獲取更多信息真實的答案。

^{[28]}nan

^{[29]}我們建議進一步研究使用由 Bouza (2009) 引入的隨機響應技術的排序集抽樣來構建層邊界的想法。

^{[30]}已經開發了各種間接提問方法來減少 SDB 並提高數據可靠性，其中之一是隨機響應技術 (RRT)。

^{[31]}與以前的隨機響應技術 (RRT) 變體相比，交叉模型既不提供自我保護響應策略，也不需要隨機設備。

^{[32]}與以前的隨機響應技術 (RRT) 變體相比，交叉模型既不提供自我保護響應策略，也不需要隨機設備。

^{[33]}

## randomized response model 隨機響應模型

In carrying out surveys involving sensitive characteristics, randomized response models have been considered among the best techniques since they provide the maximum privacy protection to the respo.^{[1]}However, a sample size determination method for complex sampling surveys of sensitive issues using a randomized response model is not yet available.

^{[2]}In this paper, we developed a new unique unrelated question randomized response model in which each card has two questions, either both questions on the sensitive characteristics or both questions on the two unrelated characteristics.

^{[3]}The aim of this paper is to develop an effective randomized response model to overcome with these types of challenges arising due to sensitive nature of characteristic under study.

^{[4]}Thus, the optional randomized response model , where k is a random variable having value 1 if the response is scrambled and 0 otherwise, was considered for finding out Approximate Optimum Strata Boundaries by minimizing the variance of the estimator.

^{[5]}This paper suggests a new randomized response model useful for gathering information on quantitative sensitive variable such as drug usage, tax evasion and induced abortions etc.

^{[6]}In this article, we propose a new randomized response model to estimate the population total of a sensitive variable of quantitative nature.

^{[7]}ABSTRACT This article suggests an efficient method of estimating a rare sensitive attribute which is assumed following Poisson distribution by using three-stage unrelated randomized response model instead of the Land et al.

^{[8]}A shrinkage estimator of population mean using a prior information is proposed under unrelated question randomized response model where one of the two questions presented to the respondents is non-stigmatized and unrelated to the stigmatized character.

^{[9]}ABSTRACT In this paper, Abdelfatah and Mazloum's (2015) two-stage randomized response model is extended to unequal probability sampling and stratified unequal probability sampling, both with and without replacement.

^{[10]}Gupta et al (2002) suggested an optional randomized response model under the assumption that the mean of the scrambling variable S is ‘unity’ [i.

^{[11]}In this article, alternative randomized response models are proposed, which make use of sum of quantitative scores generated from two decks of cards being used in a survey.

^{[12]}In this paper, a new additive randomized response model has been proposed.

^{[13]}Randomized response model is one of the most recent methods which is attracting the attention of survey practitioners to deal with the problems of non-response because it protects the privacy of individuals in order to acquire the truthful response.

^{[14]}The operating characteristics (OCs) of a subset ranking and selection procedure are derived for a randomized response model for continuous data.

^{[15]}ABSTRACT This paper proposes an efficient stratified randomized response model based on Chang et al.

^{[16]}The rare stigmatized parameter is estimated using an ameliorated two-stage randomized response model under stratified sampling and stratified double sampling schemes.

^{[17]}We propose two optional randomized response models (ORRMs) to increase the respondents cooperation.

^{[18]}

在進行涉及敏感特徵的調查時，隨機響應模型被認為是最好的技術之一，因為它們為響應提供了最大的隱私保護。

^{[1]}然而，使用隨機響應模型對敏感問題進行複雜抽樣調查的樣本量確定方法尚不可用。

^{[2]}在本文中，我們開發了一種新的獨特的無關問題隨機響應模型，其中每張卡片有兩個問題，要么都是關於敏感特徵的問題，要么是關於兩個不相關特徵的問題。

^{[3]}nan

^{[4]}因此，考慮了可選的隨機響應模型 ，其中 k 是隨機變量，如果響應被加擾，則值為 1，否則為 0，被考慮用於通過最小化估計量的方差來找出近似最優地層邊界。

^{[5]}本文提出了一種新的隨機響應模型，可用於收集定量敏感變量的信息，例如藥物使用、逃稅和人工流產等。

^{[6]}在本文中，我們提出了一種新的隨機響應模型來估計數量性質的敏感變量的總體總數。

^{[7]}摘要 本文提出了一種估計稀有敏感屬性的有效方法，該方法通過使用三階段不相關隨機響應模型而不是 Land 等人的假設遵循泊松分佈。

^{[8]}在無關問題隨機響應模型下提出了使用先驗信息的人口均值收縮估計量，其中向受訪者提出的兩個問題之一是非污名化且與污名化特徵無關。

^{[9]}摘要 在本文中，Abdelfatah 和 Mazloum (2015) 的兩階段隨機響應模型被擴展到不等概率抽樣和分層不等概率抽樣，無論有沒有放回。

^{[10]}nan

^{[11]}在本文中，提出了替代隨機響應模型，該模型利用調查中使用的兩副紙牌產生的定量分數之和。

^{[12]}nan

^{[13]}隨機響應模型是最近引起調查從業人員關注的處理不響應問題的方法之一，因為它保護了個人的隱私以獲得真實的響應。

^{[14]}子集排序和選擇過程的操作特徵 (OC) 是針對連續數據的隨機響應模型得出的。

^{[15]}nan

^{[16]}nan

^{[17]}nan

^{[18]}

## randomized response algorithm

To measure the privacy guarantee of an algorithm, we use the concept of differential privacy and use the randomized response algorithm to generate differentially private data.^{[1]}Our solution relies on a distributed client-server architecture and a two-stage Randomized Response algorithm, along with an implementation on the popular recommendation model, Matrix Factorization (MF).

^{[2]}

為了衡量算法的隱私保證，我們使用差分隱私的概念，並使用隨機響應算法生成差分隱私數據。

^{[1]}我們的解決方案依賴於分佈式客戶端-服務器架構和兩階段隨機響應算法，以及流行的推薦模型矩陣分解 (MF) 的實現。

^{[2]}

## randomized response mechanism

In our mechanism, users perturb their ratings locally on their devices using Laplace and randomized response mechanisms and send the perturbed ratings to the service provider.^{[1]}Second, we present a generalized randomized response mechanism to achieve ( ε , δ ) -local differential privacy for location privacy preservation, which obtains the upper bound of error, and serve it as the basic building block to design a unified private continuous location sharing framework with an untrusted server.

^{[2]}

在我們的機制中，用戶使用拉普拉斯和隨機響應機制在他們的設備上本地擾亂他們的評分，並將擾亂的評分發送給服務提供商。

^{[1]}其次，我們提出了一種廣義的隨機響應機制來實現（ε，δ）-局部差分隱私，用於位置隱私保護，獲得誤差的上限，並將其作為設計統一私有連續位置共享框架的基本構建塊使用不受信任的服務器。

^{[2]}