This paper investigates the problem of a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate with simply supported edge conditions. この論文は、単純に支持されたエッジ条件を備えた傾斜機能多層一次元斜方晶準結晶プレートの問題を調査した。

An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate

In this paper, we create a new model of functionally graded multilayered 1D piezoelectric quasicrystal plates using the state vector approach, in which varying functionally graded electro-elastic properties can be extended from exponential to linear and higher order in the thickness direction. この論文では、状態ベクトルアプローチを使用して、傾斜機能多層1D圧電準結晶プレートの新しいモデルを作成します。このモデルでは、傾斜機能の電気弾性特性を指数関数から線形に拡張し、厚さ方向に高次にすることができます。

Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach

This paper investigates the problem of a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate with simply supported edge conditions. この論文は、単純に支持されたエッジ条件を備えた傾斜機能多層一次元斜方晶準結晶プレートの問題を調査した。

An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate

Based on the nonlocal elasticity theory, the static bending deformation of a functionally graded multilayered one-dimensional (1D) hexagonal piezoelectric quasicrystal (PQC) simply supported nanoplate is investigated under surface mechanical loadings. 非局所弾性理論に基づいて、機能的に傾斜した多層一次元（1D）六角形圧電準結晶（PQC）の単純に支持されたナノプレートの静的曲げ変形を表面の機械的負荷の下で調査します。

Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates

This paper investigates the problem of a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate with simply supported edge conditions. この論文は、単純に支持されたエッジ条件を備えた傾斜機能多層一次元斜方晶準結晶プレートの問題を調査した。

An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate

In this paper, we create a new model of functionally graded multilayered 1D piezoelectric quasicrystal plates using the state vector approach, in which varying functionally graded electro-elastic properties can be extended from exponential to linear and higher order in the thickness direction. この論文では、状態ベクトルアプローチを使用して、傾斜機能多層1D圧電準結晶プレートの新しいモデルを作成します。このモデルでは、傾斜機能の電気弾性特性を指数関数から線形に拡張し、厚さ方向に高次にすることができます。

Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach

Based on the nonlocal elasticity theory, the static bending deformation of a functionally graded multilayered one-dimensional (1D) hexagonal piezoelectric quasicrystal (PQC) simply supported nanoplate is investigated under surface mechanical loadings. 非局所弾性理論に基づいて、機能的に傾斜した多層一次元（1D）六角形圧電準結晶（PQC）の単純に支持されたナノプレートの静的曲げ変形を表面の機械的負荷の下で調査します。

Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates